amd显卡bios打包

amd显卡bios打包,第1张

打包AMD显卡BIOS需要以下步骤:

1. 下载AMD显卡BIOS文件。可以从AMD官方网站或第三方网站下载。

2. 下载和安装ATIFlash工具。这是一个用于刷新AMD显卡BIOS的免费工具。

3. 打开ATIFlash工具并选择“Save”选项将BIOS文件保存到本地。

4. 打开ATIFlash工具并选择“Load”选项将BIOS文件加载到工具中。

5. 在ATIFlash工具中选择“Program”选项,然后选择“Save to File”选项将BIOS文件保存为新文件。

6. 将所有文件打包成一个压缩文件,例如ZIP或RAR格式。

7. 提供打包后的文件给需要使用的人或组织。

注意事项:

在打包AMD显卡BIOS时,请确保您已经备份了原始BIOS文件,以防刷写BIOS时出现问题。此外,请注意,刷新显卡BIOS可能会导致显卡出现问题,并且可能会导致显卡的保修失效,因此请谨慎 *** 作。

看见这个东西第一反应就是开了垂直同步,可是到quality setting一看,垂直同步是关着的。

然后再运行打包之后的程序会发现程序的帧率只有90和45两个状态。这不就是every V blank和every second V blank吗。

最后在steamvr设置里发现一个叫运动平滑的东西。开了的话不足90帧的地方会变成45帧。关掉就会稳定在80+.

Steamvr上对运动平滑的解释:

效果大概是在帧数不足90帧的时候在两帧之间插一帧,用来欺骗眼镜告诉你整个体验还是很流畅的。测试效果也是在帧率低的时候开着比较好。

最后:碰到这个东西可以不去管他。在优化的时候先把运动平滑关掉。然后正常用的时候打开就好了。

最后的最后:还是没找到怎么关掉垂直同步。

常见 GPU 利用率低原因分析

1、数据加载相关

1)存储和计算跨城了,跨城加载数据太慢导致 GPU 利用率低

说明:例如数据存储在“深圳 ceph”,但是 GPU 计算集群在“重庆”,那就涉及跨城使用了,影响很大。

优化:要么迁移数据,要么更换计算资源,确保存储及计算是同城的。

2)存储介质性能太差

说明:不同存储介质读写性能比较:本机 SSD >ceph >cfs-1.5 >hdfs >mdfs

优化:将数据先同步到本机 SSD,然后读本机 SSD 进行训练。本机 SSD 盘为“/dockerdata”,可先将其他介质下的数据同步到此盘下进行测试,排除存储介质的影响。

3)小文件太多,导致文件 io 耗时太长

说明:多个小文件不是连续的存储,读取会浪费很多时间在寻道上

优化:将数据打包成一个大的文件,比如将许多图片文件转成一个 hdf5/pth/lmdb/TFRecord 等大文件

其他格式转换方式请自行谷歌

4)未启用多进程并行读取数据

说明:未设置 num_workers 等参数或者设置的不合理,导致 cpu 性能没有跑起来,从而成为瓶颈,卡住 GPU

优化:设置 torch.utils.data.DataLoader 方法的 num_workers 参数、tf.data.TFRecordDataset 方法的 num_parallel_reads 参数或者 tf.data.Dataset.map 的 num_parallel_calls 参数。

5)未启用提前加载机制来实现 CPU 和 GPU 的并行

说明:未设置 prefetch_factor 等参数或者设置的不合理,导致 CPU 与 GPU 在时间上串行,CPU 运行时 GPU 利用率直接掉 0

优化:设置 torch.utils.data.DataLoader 方法的 prefetch_factor 参数 或者 tf.data.Dataset.prefetch()方法。prefetch_factor 表示每个 worker 提前加载的 sample 数量 (使用该参数需升级到 pytorch1.7 及以上),Dataset.prefetch()方法的参数 buffer_size 一般设置为:tf.data.experimental.AUTOTUNE,从而由 TensorFlow 自动选择合适的数值。

6)未设置共享内存 pin_memory

说明:未设置 torch.utils.data.DataLoader 方法的 pin_memory 或者设置成 False,则数据需从 CPU 传入到缓存 RAM 里面,再给传输到 GPU 上

优化:如果内存比较富裕,可以设置 pin_memory=True,直接将数据映射到 GPU 的相关内存块上,省掉一点数据传输时间

2、数据预处理相关

1)数据预处理逻辑太复杂

说明:数据预处理部分超过一个 for 循环的,都不应该和 GPU 训练部分放到一起

优化:a、设置 tf.data.Dataset.map 的 num_parallel_calls 参数,提高并行度,一般设置为 tf.data.experimental.AUTOTUNE,可让 TensorFlow 自动选择合适的数值。

b、将部分数据预处理步骤挪出训练任务,例如对图片的归一化等 *** 作,提前开启一个 spark 分布式任务或者 cpu 任务处理好,再进行训练。

c、提前将预处理部分需要用到的配置文件等信息加载到内存中,不要每次计算的时候再去读取。

d、关于查询 *** 作,多使用 dict 加速查询 *** 作;减少 for、while 循环,降低预处理复杂度。

2)利用 GPU 进行数据预处理 -- Nvidia DALI

说明:Nvidia DALI 是一个专门用于加速数据预处理过程的库,既支持 GPU 又支持 CPU

优化:采用 DALI,将基于 CPU 的数据预处理流程改造成用 GPU 来计算

3、模型保存相关

1)模型保存太频繁

说明:模型保存为 CPU *** 作,太频繁容易导致 GPU 等待

优化:减少保存模型(checkpoint)的频率

4、指标相关

1)loss 计算太复杂

说明:含有 for 循环的复杂 loss 计算,导致 CPU 计算时间太长从而阻塞 GPU

优化:该用低复杂度的 loss 或者使用多进程或多线程进行加速

2)指标上报太频繁

说明:指标上报 *** 作太频繁,CPU 和 GPU 频繁切换导致 GPU 利用率低

优化:改成抽样上报,例如每 100 个 step 上报一次

5、日志相关

1)日志打印太频繁

说明:日志打印 *** 作太频繁,CPU 和 GPU 频繁切换导致 GPU 利用率低

优化:改成抽样打印,例如每 100 个 step 打印一次

资料领取直通车:大厂面试题锦集+视频教程

Linux服务器学习网站:C/C++Linux服务器开发/后台架构师

四、常见数据加载方法说明

1、pytorch 的 torch.utils.data.DataLoader

DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,

batch_sampler=None, num_workers=0, collate_fn=None,

pin_memory=False, drop_last=False, timeout=0,

worker_init_fn=None, *, prefetch_factor=2,

persistent_workers=False)

登录后复制

从参数定义中,我们可以看到 DataLoader 主要支持以下几个功能:

支持加载 map-style 和 iterable-style 的 dataset,主要涉及到的参数是 dataset

自定义数据加载顺序,主要涉及到的参数有 shuffle, sampler, batch_sampler, collate_fn

自动把数据整理成 batch 序列,主要涉及到的参数有 batch_size, batch_sampler, collate_fn, drop_last

单进程和多进程的数据加载,主要涉及到的参数有 num_workers, worker_init_fn

自动进行锁页内存读取 (memory pinning),主要涉及到的参数 pin_memory

支持数据预加载,主要涉及的参数 prefetch_factor

2、tensorflow 的 tf.data.Dataset

ds_train = tf.data.Dataset.from_tensor_slices((x,y))\

.shuffle(5000)\

.batch(batchs)\

.map(preprocess,num_parallel_calls=tf.data.experimental.AUTOTUNE)\

.prefetch(tf.data.experimental.AUTOTUNE)

登录后复制

Dataset.prefetch(): 可以让数据集对象 Dataset 在 å 训练时预取出若干个元素,使得在 GPU 训练的同时 CPU 可以准备数据,提升训练流程的效率

Dataset.map(f): 转换函数 f 映射到数据集每一个元素可以利用多 CPU 资源,充分利用多核心的优势对数据进行并行化变换, num_parallel_calls 设置为 tf.data.experimental.AUTOTUNE 以让 TensorFlow 自动选择合适的数值,数据转换过程多进程执行,设置 num_parallel_calls 参数能发挥 cpu 多核心的优势

Dataset.shuffle(buffer_size): 将数据集打乱,取出前 buffer_size 个元素放入,并从缓冲区中随机采样,采样后的数据用后续数据替换

Dataset.batch(batch_size):将数据集分成批次,即对每 batch_size 个元素,使用 tf.stack() 在第 0 维合并,成为一个元素

五、分布式任务常见的 GPU 利用率低问题

分布式任务相比单机任务多了一个机器间通信环节。如果在单机上面运行的好好的,扩展到多机后出现 GPU 利用率低,运行速度慢等问题,大概率是机器间通信时间太长导致的。请排查以下几点:

1、机器节点是否处在同一 modules?

答:机器节点处于不同 modules 时,多机间通信时间会长很多,deepspeed 组件已从平台层面增加调度到同一 modules 的策略,用户不需要 *** 作;其他组件需联系我们开启。

2、多机时是否启用 GDRDMA?

答:能否启用 GDRDMA 和 NCCL 版本有关,经测试,使用 PyTorch1.7(自带 NCCL2.7.8)时,启动 GDRDMA 失败,和 Nvidia 的人沟通后确定是 NCCL 高版本的 bug,暂时使用的运行注入的方式来修复;使用 PyTorch1.6(自带 NCCL2.4.8)时,能够启用 GDRDMA。经测试,“NCCL2.4.8 + 启用 GDRDMA ” 比 “NCCL2.7.8 + 未启用 GDRDMA”提升 4%。通过设置 export NCCL_DEBUG=INFO,查看日志中是否出现[receive] via NET/IB/0/GDRDMA 和 [send] via NET/IB/0/GDRDMA,出现则说明启用 GDRDMA 成功,否则失败。

3、pytorch 数据并行是否采用 DistributedDataParallel ?

答:PyTorch 里的数据并行训练,涉及 nn.DataParallel (DP) 和 nn.parallel.DistributedDataParallel (DDP) ,我们推荐使用 nn.parallel.DistributedDataParallel (DDP)。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11216292.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-14
下一篇 2023-05-14

发表评论

登录后才能评论

评论列表(0条)

保存