编写一段ARM程序,实现数据块复制

编写一段ARM程序,实现数据块复制,第1张

你可以自己写一个汇编的程序,把Nand Flash 中的程序搬到SDRAM中。因为S3C2410有Nor Flash和Nand Flash有两种启动方式,所以在搬移过程中略有不同。如果用Nand Flash启动可以使用下面的代码,至于Nor Flash启动就相对简单了,你可以自己研究一下。

文件1.head.s

@ 文件 head.s

@ 作用:关闭看门狗、SDRAM 的初始化设置、搬移 Nand Flash 4K 以后

@ 的代码到 SDRAM 的指定位置、执行 SDRAM 中的代码

.text

.global _start

_start:

ldr r0, =0x53000000 @ Close Watch Dog Timer

mov r1, #0x0

str r1, [r0]

bl memory_setup @ Initialize memory setting

bl flash_to_sdram @ Copy code to sdram

ldr sp, =0x34000000 @ Set stack pointer

ldr pc, =main @ execute the code in SDRAM

文件2:flash.s

@ 文件 flash.s

@ 作用:设置 Nand Flash 的控制寄存器、读取 Nand Flash

@ 中的代码到 SDRAM 的指定位置

.equ NFCONF, 0x4e000000

.equ NFCMD, 0x4e000004

.equ NFADDR, 0x4e000008

.equ NFDATA, 0x4e00000c

.equ NFSTAT, 0x4e000010

.equ NFECC, 0x4e000014

.global flash_to_sdram

flash_to_sdram:

@ Save return addr

mov r10,lr

@ Initialize Nand Flash

mov r0,#NFCONF

ldr r1,=0xf830

str r1,[r0]

@ First reset and enable Nand Flash

ldr r1,[r0]

bic r1, r1, #0x800

str r1,[r0]

ldr r2,=NFCMD

mov r3,#0xff

str r3,[r2]

@ for delay

mov r3, #0x0a

1:

subs r3, r3, #1

bne 1b

@ Wait until Nand Flash bit0 is 1

wait_nfstat:

ldr r2,=NFSTAT

ldr r3,[r2]

tst r3,#0x01

beq wait_nfstat

@ Disable Nand Flash

ldr r0,=NFCONF

ldr r1,[r0]

orr r1,r1,#0x8000

str r1,[r0]

@ Initialzie stack

ldr sp,=4096

@ Set arguments and call

@ function nand_read defined in nand_read.c

ldr r0,=0x30000000

mov r1,#4096

mov r2,#1024

bl nand_read

@ return

mov pc,r10

文件3:interrupt.c

/*

* 文件 interrupt.c

* 作用:设置并响应按键中断

*/

#include "printf.h"

#define GPECON (*(volatile unsigned long *)0x56000040)

#define GPEDAT (*(volatile unsigned long *)0x56000044)

#define GPEUP (*(volatile unsigned long *)0x56000048)

#define GPFCON (*(volatile unsigned long *)0x56000050)

#define GPFDAT (*(volatile unsigned long *)0x56000054)

#define GPFUP (*(volatile unsigned long *)0x56000058)

#define GPGCON (*(volatile unsigned long *)0x56000060)

#define GPGDAT (*(volatile unsigned long *)0x56000064)

#define GPGUP (*(volatile unsigned long *)0x56000068)

#define EINTMASK (*(volatile unsigned long *)0x560000a4)

#define INTMSK (*(volatile unsigned long *)0X4a000008)

#define PRIORITY (*(volatile unsigned long *)0x4a00000c)

#define EINTPEND (*(volatile unsigned long *)0x560000a8)

#define INTPND (*(volatile unsigned long *)0X4a000010)

#define SRCPND (*(volatile unsigned long *)0X4a000000)

#define BIT_EINT0 (0x1 <<0)

#define BIT_EINT2 (0x1 <<2)

#define BIT_EINT8_23 (0x1 <<5)

#define SET_KEY_INTERRUPT_REG() ({ \

GPGCON = (GPGCON &(~((3<<12)|(3<<4)))) | ((1<<12)|(1<<4)) \

GPGDAT = GPGDAT &(~((1<<6)|(1<<2))) \

GPECON = (GPECON &(~((3<<26)|(3<<22)))) | ((1<<26)|(1<<22))\

GPEDAT = GPEDAT &(~((1<<13)|(1<<11))) \

GPGCON = (GPGCON &(~((3<<22)|(3<<6)))) | ((2<<22)|(2<<6)) \

GPFCON = (GPFCON &(~((3<<4)|(3<<0)))) | ((2<<4)|(2<<0)) \

})

__inline void ClearPending(int bit)

{

SRCPND = bit

INTPND = bit

}

void init_irq( ) {

GPFCON = ((0x1<<8) | (0x1 <<10) | (0x1 <<12) | (0x1 <<14)) // Set the led D9~D12 output

/*

GPGCON = (GPGCON &(~((3<<12)|(3<<4)))) | ((1<<12)|(1<<4)) // GPGCON6,2 set output

// GPGCON6:KSCAN1

// GPGCON2:KSCAN3

GPGDAT = GPGDAT &(~((1<<6)|(1<<2))) // GPGDAT6,2 output 0

GPECON = (GPECON &(~((3<<26)|(3<<22)))) | ((1<<26)|(1<<22)) // GPECON13,11 set output

GPEDAT = GPEDAT &(~((1<<13)|(1<<11))) // GPEDAT13,11 output 0

GPGCON = (GPGCON &(~((3<<22)|(3<<6)))) | ((2<<22)|(2<<6)) // GPGCON11,3 set EINT

GPFCON = (GPFCON &(~((3<<4)|(3<<0)))) | ((2<<4)|(2<<0)) // GPFDAT2,0 set EINT

*/

// Use the defined micro instead of above code

SET_KEY_INTERRUPT_REG()

GPFUP |= (1<<0) | (1<<2) // Up

GPGUP |= (1<<3) | (1<<11) // Up

EINTPEND |= (1 <<19) | (1 <<11) // Clear eint 11,19

EINTMASK &= (~((1 <<19) | (1 <<11)))// Enable EINT11,19

ClearPending(BIT_EINT0|BIT_EINT2|BIT_EINT8_23)// Enable EINT0,2 and the EINT8_23

INTMSK &= (~0x25)

return

}

int Key_Scan( void )

{

int i

for(i = 0i <1000 i++)

GPGDAT = (GPGDAT &(~((1<<6)|(1<<2)))) | (1<<6) | (0<<2) //GPG6,2 output 0

GPEDAT = (GPEDAT &(~((1<<13)|(1<<11)))) | (1<<13) | (1<<11) //GPE13,11 output 0

if( (GPFDAT&(1<<0)) == 0 ) return 16

else if( (GPFDAT&(1<<2)) == 0 ) return 15

else if( (GPGDAT&(1<<3)) == 0 ) return 14

else if( (GPGDAT&(1<<11)) == 0 ) return 13

GPGDAT = (GPGDAT &(~((1<<6)|(1<<2)))) | (0<<6) | (1<<2) //GPG6,2 output 0

GPEDAT = (GPEDAT &(~((1<<13)|(1<<11)))) | (1<<13) | (1<<11) //GPE13,11 output 0

if( (GPFDAT&(1<<0)) == 0 ) return 11

else if( (GPFDAT&(1<<2)) == 0 ) return 8

else if( (GPGDAT&(1<<3)) == 0 ) return 5

else if( (GPGDAT&(1<<11)) == 0 ) return 2

GPGDAT = (GPGDAT &(~((1<<6)|(1<<2)))) | (1<<6) | (1<<2) //GPG6,2 output 0

GPEDAT = (GPEDAT &(~((1<<13)|(1<<11)))) | (1<<13) | (0<<11) //GPE13,11 output 0

if( (GPFDAT&(1<<0)) == 0 ) return 10

else if( (GPFDAT&(1<<2)) == 0 ) return 7

else if( (GPGDAT&(1<<3)) == 0 ) return 4

else if( (GPGDAT&(1<<11)) == 0 ) return 1

GPGDAT = (GPGDAT &(~((1<<6)|(1<<2)))) | (1<<6) | (1<<2) //GPG6,2 output 0

GPEDAT = (GPEDAT &(~((1<<13)|(1<<11)))) | (0<<13) | (1<<11) //GPE13,11 output 0

if( (GPFDAT&(1<<0)) == 0 ) return 12

else if( (GPFDAT&(1<<2)) == 0 ) return 9

else if( (GPGDAT&(1<<3)) == 0 ) return 6

else if( (GPGDAT&(1<<11)) == 0 ) return 3

else return 0xff

}

void EINT_Handle( void ) {

GPGCON = (GPGCON &(~((3<<22)|(3<<6)))) | ((0<<22)|(0<<6)) //GPG11,3 set input

GPFCON = (GPFCON &(~((3<<4)|(3<<0)))) | ((0<<4)|(0<<0)) //GPF2, 0 set input

if(INTPND==BIT_EINT8_23) {

if(EINTPEND&(1<<11))

EINTPEND |= 1<<11

if(EINTPEND&(1<<19))

EINTPEND |= 1<<19

ClearPending(BIT_EINT8_23)

}

else if(INTPND==BIT_EINT0) {

ClearPending(BIT_EINT0)

} else if(INTPND==BIT_EINT2) {

ClearPending(BIT_EINT2)

}

int key = Key_Scan()

if( key != 0xff ) {

uart_printf( "K%d is pressed!\n", key )

GPFDAT = ~(key <<4)

}

SET_KEY_INTERRUPT_REG()

return

}

文件4:mem.s

@ 文件 mem.s

@ 作用:SDRAM 的初始化设置

@ 关于初始化的更多细节,请参考我的前一篇随笔

.global memory_setup @ 导出 memory_setup, 使其对链接器可见

memory_setup:

mov r1, #0x48000000

adrl r2, mem_cfg_val

add r3, r1, #13*4

1:

@ write initial values to registers

ldr r4, [r2], #4

str r4, [r1], #4

cmp r1, r3

bne 1b

mov pc, lr

.align 4

mem_cfg_val:

.long 0x22111110 @ BWSCON

.long 0x00000700 @ BANKCON0

.long 0x00000700 @ BANKCON1

.long 0x00000700 @ BANKCON2

.long 0x00000700 @ BANKCON3

.long 0x00000700 @ BANKCON4

.long 0x00000700 @ BANKCON5

.long 0x00018005 @ BANKCON6

.long 0x00018005 @ BANKCON7 9bit

.long 0x008e07a3 @ REFRESH

.long 0x000000b2 @ BANKSIZE

.long 0x00000030 @ MRSRB6

.long 0x00000030 @ MRSRB7

文件5:nand_read.c

/* 文件 nand_read.c

* 作用:从 Nand Flash 中读取一块数据到 SDRAM 中的指定位置

*/

#define NFCONF (*(volatile unsigned long *)0x4e000000)

#define NFCMD (*(volatile unsigned long *)0x4e000004)

#define NFADDR (*(volatile unsigned long *)0x4e000008)

#define NFDATA (*(volatile unsigned long *)0x4e00000c)

#define NFSTAT (*(volatile unsigned long *)0x4e000010)

#define NFECC (*(volatile unsigned long *)0x4e000014)

#define NAND_SECTOR_SIZE 512

#define NAND_BLOCK_MASK 0x1ff

void wait_idle() {

int i

for (i = 0i <50000++i)

}

int nand_read(unsigned char *buf, unsigned long start_addr, int size){

int i, j

/*

* detect the argument

*/

if ((start_addr &NAND_BLOCK_MASK) || (size &NAND_BLOCK_MASK)) {

return -1

}

/* chip Enable */

NFCONF &= ~0x800

for (i=0i<10i++) {

}

for (i=start_addri <(start_addr + size)i+=NAND_SECTOR_SIZE) {

NFCMD = 0

/* Write Address */

NFADDR = i &0xff

NFADDR = (i >>9) &0xff

NFADDR = (i >>17) &0xff

NFADDR = (i >>25) &0xff

wait_idle()

for(j=0j <NAND_SECTOR_SIZEj++) {

*buf++ = (NFDATA &0xff)

}

}

NFCONF |= 0x800 /* chip disable */

return 0

}

文件6:sdram.c

/* 文件 sdram.c

* 作用:循环点 FS2410 开发板上的 D9、D10、D11、D12

* 四个发光二极管。

*/

#define GPFCON (*(volatile unsigned long *)0x56000050)

#define GPFDAT (*(volatile unsigned long *)0x56000054)

int main()

{

int i,j

while(1) {

for (i = 0i <4++i) {

GPFCON = 0x1<<(8+i*2)

GPFDAT = 0x0

// for delay

for(j=0j<50000++j)

}

}

}

文件7:nand.lds

SECTIONS {

first 0x00000000 : { head.o mem.o flash.o nand_read.o }

second 0x30000000 : AT(4096) { sdram.o }

}

文件8:Makefile

sdram:head.s flash.s mem.s sdram.c

arm-linux-gcc -c -o head.o head.s

arm-linux-gcc -c -o mem.o mem.s

arm-linux-gcc -c -o flash.o flash.s

arm-linux-gcc -c -o nand_read.o nand_read.c

arm-linux-gcc -c -o sdram.o sdram.c

arm-linux-ld -Tnand.lds head.o mem.o flash.o nand_read.o sdram.o -o sdram_tmp.o

arm-linux-objcopy -O binary -S sdram_tmp.o sdram

clean:

rm -f *.o

rm -f sdram

好了,你把这些文件拷下去,执行make命令就能生成可执行的二进制代码sdram,把sdram烧写到板子上就能运行了。祝你好运

针对5G连网伴随的物联网应用加速趋势,ARM宣布针对蜂窝式连接物联网设备提出名为ARMKigen的整合式SIM功能设计,借此让借由整合式iSIM或嵌入式eSIM能有更安全、便利的使用模式。

伴随未来连网使用模式,以及物联网应用需求,传统SIM卡方式势必会被整合式iSIM,或是嵌入式eSIM使用模式取代,借此对应更具d性、便利且安全的使用体验。而配合此类市场趋势,ARM宣布推出名为ARMKigen的整合式SIM功能设计,借此让透过蜂窝式连接使用的物联网设备能有更便利的网路连接布署、管理,以及调整联网模式的使用体验,同时也能避免有心人士透过更换SIM卡等方式危害物联网设备使用安全。

此外,采用整合式SIM设计,也更能让装置设计体积缩减、轻薄,让物联网设计将能有更大d性。ARMKigen设计更基于ARM平台安全架构通用框架设计,借此确保装置系统安全性,同时也符合GSMA提出eSIM设计规范,更整合ARM旗下CryptoIsland安全机制,借此确保装置与使用者隐私安全。

除了提出Kigen硬体设计,ARM同时也推出KigenOS软体平台,让Kigen设计能在软硬体发挥更大使用效益,让开发者能以此建构更广泛的物联网应用。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11224484.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-14
下一篇 2023-05-14

发表评论

登录后才能评论

评论列表(0条)

保存