y=conv(x,h)计算卷积。
(1)即y=filter(p,d,x)用来实现差分方程,d表示差分方程输出y的系数,p表示输入x的系数,而x表示输入序列。输出结果长度数等于x的长度。
实现差分方程,先从简单的说起:
filter([1,2],1,[1,2,3,4,5]),实现y[k]=x[k]+2*x[k-1]
y[1]=x[1]+2*0=1
(x[1]之前状态都用0)
y[2]=x[2]+2*x[1]=2+2*1=4
(2)y=conv(x,h)是用来实现卷级的,对x序列和h序列进行卷积,输出的结果个数等于x的长度与h的长度之和减去1。
卷积公式:z(n)=x(n)*y(n)=
∫x(m)y(n-m)dm.
程序一:以下两个程序的结果一样
(1)h
=
[3
2
1
-2
1
0
-4
0
3]
%
impulse
response
x
=
[1
-2
3
-4
3
2
1]
%
input
sequence
y
=
conv(h,x)
n
=
0:14
subplot(2,1,1)
stem(n,y)
xlabel('Time
index
n')
ylabel('Amplitude')
title('Output
Obtained
by
Convolution')
grid
(2)x1
=
[x
zeros(1,8)]
y1
=
filter(h,1,x1)
subplot(2,1,2)
stem(n,y1)
xlabel('Time
index
n')
ylabel('Amplitude')
title('Output
Generated
by
Filtering')
grid
程序二:filter和conv的不同
x=[1,2,3,4,5]
h=[1,1,1]
y1=conv(h,x)
y2=filter(h,1,x)
y3=filter(x,1,h)
结果:y1
=
1
3
6
9
12
9
5
y2
=
1
3
6
9
12
y3
=
1
3
6
可见:filter函数y(n)是从n=1开始,认为所有n<1都为0;而conv是从卷积公式计算,包括n<1部分。
因此filter
和conv
的结果长短不同
程序三:滤波后信号幅度的变化
num=100
%总共1000个数
x=rand(1,num)
%生成0~1随机数序列
x(x>0.5)=1
x(x<=0.5)=-1
h1=[0.2,0.5,1,0.5,0.2]
h2=[0,0,1,0,0]
y1=filter(h1,1,x)
y2=filter(h2,1,x)
n=0:99
subplot(2,1,1)
stem(n,y1)
subplot(2,1,2)
stem(n,y2)
MATLAB中提供了卷积运算的函数命令conv2,其语法格式为:
C
=
conv2(A,B)
C
=
conv2(A,B)返回矩阵A和B的二维卷积C。若A为ma×na的矩阵,B为mb×nb的矩阵,则C的大小为(ma+mb-1)×(na+nb-1)。
例:
A=magic(5)
A
=
17
24
1
8
15
23
5
7
14
16
4
6
13
20
22
10
12
19
21
3
11
18
25
2
9
>>
B=[1
2
1
0
2
03
1
3]
B
=
1
2
1
0
2
0
3
1
3
>>
C=conv2(A,B)
C
=
17
58
66
34
32
38
15
23
85
88
35
67
76
16
55
149
117
163
159
135
67
79
78
160
161
187
129
51
23
82
153
199
205
108
75
30
68
135
168
91
84
9
33
65
126
85
104
15
27
MATLAB图像处理工具箱提供了基于卷积的图象滤波函数filter2,filter2的语法格式为:
Y
=
filter2(h,X)
其中Y
=
filter2(h,X)返回图像X经算子h滤波后的结果,默认返回图像Y与输入图像X大小相同。例如:
其实filter2和conv2是等价的。MATLAB在计算filter2时先将卷积核旋转180度,再调用conv2函数进行计算。
Fspecial函数用于创建预定义的滤波算子,其语法格式为:
h
=
fspecial(type)
h
=
fspecial(type,parameters)
参数type制定算子类型,parameters指定相应的参数,具体格式为:
type='average',为均值滤波,参数为n,代表模版尺寸,用向量表示,默认值为[3,3]。
type=
'gaussian',为高斯低通滤波器,参数有两个,n表示模版尺寸,默认值为[3,3],sigma表示滤波器的标准差,单位为像素,默认值为0.5
在MATLAB中,可以用函数y=filter(p,d,x)实现差分方程的仿真,也可以用函数y=conv(x,h)计算卷积。即y=filter(p,d,x)用来实现差分方程。y=conv(x,h)是用来实现卷级的,对x序列和h序列进行卷积,输出的结果个数等于x的长度与h的长度之和减去1。扩展资料MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。
MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。 [1]
MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的.形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。
function[f,k]=sconv(f1,f2,k1,k2,p)
%计算连续信号卷积积分f(t)=f1(t)*f2(t)
%f:卷积积分f(t)对应的非零样值向量
%k:f(t)的对应时间向量
%f1:f1(t)非零样值向量
%f2:f2(t)的非零样值向量
%k1:f1(t)的对应时间向量
%k2:f2(t)的对应时间向量
%p:取样时间间隔
f=conv(f1,f2)
f=f*p
k0=k1(1)+k2(1)
k3=length(f1)+length(f2)-2
k=k0:p:k0+k3*p
subplot(2,2,1)
plot(k1,f1)
title('f1(t)')
xlabel('t')
ylabel('f1(t)')
subplot(2,2,2)
plot(k2,f2)
title('f2(t)')
subplot(2,2,3)
plot(k,f)
h=get(gca,'position')
h(3)=2.5*h(3)
set(gca,'position',h)
title('f(t)=f1(t)*f2(t)')
xlabel('t')
ylabel('f(t)')
如果你就当这两个都是从1开始的,
直接卷积掉,
结果是5个数,
第一个数就是x(1)*h(1),
这也是你要的卷积当中的一个,
只是在你要的结果里,这个是x(0)*h(-1)
,所以在结果的序号是-1而不是1,
所以你只要把结果平移就可以了
因为matlab不支持负数序号的数组,
所以你最好只是“在心里平移”就好了,
就是说你保存的还是这个结果,
只是写程序的时候记住了,
这个是从-1开始的
你只需要在画图的时候指定横坐标
plot(-1:3,
conv(x,
h))
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)