最主要的是冒泡排序、选择排序、插入排序以及快速排序
1、冒泡排序
冒泡排序是一个比较简单的排序方法。在待排序的数列基本有序的情况下排序速度较快。若要排序的数有n个,则需要n-1轮排序,第j轮排序中,从第一个数开始,相邻两数比较,若不符合所要求的顺序,则交换两者的位置;直到第n+1-j个数为止,第一个数与第二个数比较,第二个数与第三个数比较,......,第n-j个与第n+1-j个比较,共比较n-1次。此时第n+1-j个位置上的数已经按要求排好,所以不参加以后的比较和交换 *** 作。
例如:第一轮排序:第一个数与第二个数进行比较,若不符合要求的顺序,则交换两者的位置,否则继续进行二个数与第三个数比较......。直到完成第n-1个数与第n个数的比较。此时第n个位置上的数已经按要求排好,它不参与以后的比较和交换 *** 作;第二轮排序:第一个数与第二个数进行比较,......直到完成第n-2个数与第n-1个数的比较;......第n-1轮排序:第一个数与第二个数进行比较,若符合所要求的顺序,则结束冒泡法排序;若不符合要求的顺序,则交换两者的位置,然后结束冒泡法排序。
共n-1轮排序处理,第j轮进行n-j次比较和至多n-j次交换。
从以上排序过程可以看出,较大的数像气泡一样向上冒,而较小的数往下沉,故称冒泡法。
public void bubbleSort(int a[])
{
int n = a.length
for(int i=0i<n-1i++)
{
for(int j=0j<n-i-1j++)
{
if(a[j] >a[j+1])
{
int temp = a[j]
a[j] = a[j + 1]
a[j + 1] = temp
}
}
}
}
2、选择排序
选择法的原理是先将第一个数与后面的每一个数依次比较,不断将将小的赋给第一个数,从而找出最小的,然后第二个数与后面的每一个数依次比较,从而找出第二小的,然后第三个数与后面的每一个数依次比较,从而找出第三小的.....直到找到最后一个数。
public void sort(int x[])
{
int n=x.length
int k,t
for(int i=0i<n-1i++)
{
k=i
for(int j=i+1j=nj++)
{
if(x[j]>x[k])k=j
if(k!=i)
{
t=x[i]
x[i]=x[k]
x[k]=t
}
}
}
}
3、插入排序
插入排序的原理是对数组中的第i个元素,认为它前面的i-1个已经排序好,然后将它插入到前面的i-1个元素中。插入排序对少量元素的排序较为有效.
public void sort(int obj[])
{
for(int j=1j<obj.lengthj++)
{
int key=obj[j]
int i=j-1
while(i>=0&&obj[i]>key)
{
obj[i+1]=obj[i]
i--
}
obj[i+1]=key
}
}
4、快速排序
快速排序是对冒泡排序的一种改进。它的基本思想是:通过一次排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此大道整个数据变成有序序列。
public void quickSort(int obj[],int low,int high)
{
int i=low
int j=high
int keyValue=obj[i]
while(i<j)
{
int temp=0
while(i<j&&obj[j]>=keyValue)
{
j=j-1
}
temp=obj[j]
obj[j]=obj[i]
obj[i]=temp
while(i<j&&obj[i]<=keyValue)
{
i=i+1
}
temp=obj[j]
obj[j]=ojb[i]
obj[i]=temp
}
obj[i]=keyValue
if(low<i-1)
{
quickSort(obj,low,i-1)
}
if(high>i+1)
{
quickSort(obj,i+1,high)
}
}
Java实现几种常见排序方法日常 *** 作中常见的排序方法有:冒泡排序、快速排序、选择排序、插入排序、希尔排序,甚至还有基数排序、鸡尾酒排序、桶排序、鸽巢排序、归并排序等。
以下常见算法的定义
1. 插入排序:插入排序基本 *** 作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入排序的基本思想是:每步将一个待排序的纪录,按其关键码值的大小插入前面已经排序的文件中适当位置上,直到全部插入完为止。
2. 选择排序:选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。 选择排序是不稳定的排序方法。
3. 冒泡排序:冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端。
4. 快速排序:快速排序(Quicksort)是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
5. 归并排序:归并排序是建立在归并 *** 作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
6. 希尔排序:希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
https://www.cnblogs.com/wangmingshun/p/5635292.html
java常见的排序分为:1 插入类排序
主要就是对于一个已经有序的序列中,插入一个新的记录。它包括:直接插入排序,折半插入排序和希尔排序
2 交换类排序
这类排序的核心就是每次比较都要“交换”,在每一趟排序都会两两发生一系列的“交换”排序,但是每一趟排序都会让一个记录排序到它的最终位置上。它包括:起泡排序,快速排序
3 选择类排序
每一趟排序都从一系列数据中选择一个最大或最小的记录,将它放置到第一个或最后一个为位置交换,只有在选择后才交换,比起交换类排序,减少了交换记录的时间。属于它的排序:简单选择排序,堆排序
4 归并类排序
将两个或两个以上的有序序列合并成一个新的序列
5 基数排序
主要基于多个关键字排序的。
下面针对上面所述的算法,讲解一些常用的java代码写的算法
二 插入类排序之直接插入排序
直接插入排序,一般对于已经有序的队列排序效果好。
基本思想:每趟将一个待排序的关键字按照大小插入到已经排序好的位置上。
算法思路,从后往前先找到要插入的位置,如果小于则就交换,将元素向后移动,将要插入数据插入该位置即可。时间复杂度为O(n2),空间复杂度为O(1)
package sort.algorithm
public class DirectInsertSort {
public static void main(String[] args) {
// TODO Auto-generated method stub
int data[] = { 2, 6, 10, 3, 9, 80, 1, 16, 27, 20 }
int temp, j
for (int i = 1i <data.lengthi++) {
temp = data[i]
j = i - 1
// 每次比较都是对于已经有序的
while (j >= 0 &&data[j] >temp) {
data[j + 1] = data[j]
j--
}
data[j + 1] = temp
}
// 输出排序好的数据
for (int k = 0k <data.lengthk++) {
System.out.print(data[k] + " ")
}
}
}
三 插入类排序之折半插入排序(二分法排序)
条件:在一个已经有序的队列中,插入一个新的元素
折半插入排序记录的比较次数与初始序列无关
思想:折半插入就是首先将队列中取最小位置low和最大位置high,然后算出中间位置mid
将中间位置mid与待插入的数据data进行比较,
如果mid大于data,则就表示插入的数据在mid的左边,high=mid-1
如果mid小于data,则就表示插入的数据在mid的右边,low=mid+1
最后整体进行右移 *** 作。
时间复杂度O(n2),空间复杂度O(1)
package sort.algorithm
//折半插入排序
public class HalfInsertSort {
public static void main(String[] args) {
int data[] = { 2, 6, 10, 3, 9, 80, 1, 16, 27, 20 }
// 存放临时要插入的元素数据
int temp
int low, mid, high
for (int i = 1i <data.lengthi++) {
temp = data[i]
// 在待插入排序的序号之前进行折半插入
low = 0
high = i - 1
while (low <= high) {
mid = (low + high) / 2
if (temp <data[mid])
high = mid - 1
else
// low=high的时候也就是找到了要插入的位置,
// 此时进入循环中,将low加1,则就是要插入的位置了
low = mid + 1
}
// 找到了要插入的位置,从该位置一直到插入数据的位置之间数据向后移动
for (int j = ij >= low + 1j--)
data[j] = data[j - 1]
// low已经代表了要插入的位置了
data[low] = temp
}
for (int k = 0k <data.lengthk++) {
System.out.print(data[k] + " ")
}
}
}
四 插入类排序之希尔排序
希尔排序,也叫缩小增量排序,目的就是尽可能的减少交换次数,每一个组内最后都是有序的。
将待续按照某一种规则分为几个子序列,不断缩小规则,最后用一个直接插入排序合成
空间复杂度为O(1),时间复杂度为O(nlog2n)
算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。
package sort.algorithm
public class ShellSort {
public static void main(String[] args) {
int a[] = { 1, 54, 6, 3, 78, 34, 12, 45, 56, 100 }
double d1 = a.length
int temp = 0
while (true)
{
//利用这个在将组内倍数减小
//这里依次为5,3,2,1
d1 = Math.ceil(d1 / 2)
//d为增量每个分组之间索引的增量
int d = (int) d1
//每个分组内部排序
for (int x = 0x <dx++)
{
//组内利用直接插入排序
for (int i = x + di <a.lengthi += d) {
int j = i - d
temp = a[i]
for (j >= 0 &&temp <a[j]j -= d) {
a[j + d] = a[j]
}
a[j + d] = temp
}
}
if (d == 1)
break
}
for (int i = 0i <a.lengthi++)
System.out.print(a[i]+" ")
}
}
五 交换类排序之冒泡排序
交换类排序核心就是每次比较都要进行交换
冒泡排序:是一种交换排序
每一趟比较相邻的元素,较若大小不同则就会发生交换,每一趟排序都能将一个元素放到它最终的位置!每一趟就进行比较。
时间复杂度O(n2),空间复杂度O(1)
package sort.algorithm
//冒泡排序:是一种交换排序
public class BubbleSort {
// 按照递增顺序排序
public static void main(String[] args) {
// TODO Auto-generated method stub
int data[] = { 2, 6, 10, 3, 9, 80, 1, 16, 27, 20, 13, 100, 37, 16 }
int temp = 0
// 排序的比较趟数,每一趟都会将剩余最大数放在最后面
for (int i = 0i <data.length - 1i++) {
// 每一趟从开始进行比较,将该元素与其余的元素进行比较
for (int j = 0j <data.length - 1j++) {
if (data[j] >data[j + 1]) {
temp = data[j]
data[j] = data[j + 1]
data[j + 1] = temp
}
}
}
for (int i = 0i <data.lengthi++)
System.out.print(data[i] + " ")
}
}
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)