介绍较流行的几种微波EDA软件的功能

介绍较流行的几种微波EDA软件的功能,第1张

微波系统的设计越来越复杂,对电路的指标要求越来越高,电路的功能越来越多,电路的尺寸要求越做越小,而设计周期却越来越短。传统的设计方法已经不能满足微波电路设计的需要,使用微波EDA 软件工具进行微波元器件与微波系统的设计已经成为微波电路设计的必然趋势。EDA即Electronic Design Automation, 电子设计自动化;目前,国外各种商业化的微波EDA 软件工具不断涌现,微波射频领域主要的EDA 工具首推Agilent 公司的ADS 软件和Ansoft 公司的HFSS、Designer 软件,其次是比较小型的有MicrowaveOffice, Ansoft Serenade, CST, Zeland, XFDTD, Sonnet 等电路设计软件。下面将会将会简要地介绍一下各个微波EDA 软件的功能特点和使用范围,以期大家有个总体的了解。微波EDA 仿真软件与电磁场的数值算法密切相关,在介绍微波EDA 软件之前先简要的介绍一下微波电磁场理论的数值算法。所有的数值算法都是建立在Maxwell方程组之上的,了解Maxwell方程是学习电磁场数值算法的基础;在频域,数值算法有:有限元法( FEM -- Finite Element Method)、矩量法( MoM -- Method of Moments),差分法( FDM -- Finite Difference Methods),边界元法( BEM -- ),和传输线法( TLM -- Transmission-Line-matrix Method),在时域,数值算法有:时域有限差分法( FDTD – Finite Difference Time Domain ),和有限积分法( FIT – Finite Integration Technology )。如果想进一步了解各种数值算法的具体实现,可以参阅以下几本书籍:① Microwave Circuit Modeling Using Electromagnetic Field Simulation,②Numerical Techniques in Electromagnetics,③ Electromagmetic Simunation Using the FDTD Method,④ Complex eletromagnetic problems and numerical Simulation Approaches。其中,使用矩量法( MoM ) 的微波EDA软件有ADS,Ansoft Designer,Microwave Office, Zeland IE3D,Ansoft Esemble,Super NEC和FEKO;使用有限元法 ( FEM )的微波EDA软件有HFSS和ANSYS;使用时域有限差分法( FDTD ) 的微波EDA软件有 EMPIRE和XFDTD,使用有限积分法( FIT ) 的微波EDA软件有CST Microwave Studio和CST Mafia。下面来介绍较流行几种的微波EDA软件的功能和应用。ADS– Advanced Design System,是Agilent公司推出的微波电路和通信系统仿真软件,是国内各大学和研究所使用最多的软件之一。其功能非常强大,仿真手段丰富多样,可实现包括时域和频域、数字与模拟、线性与非线性、噪声等多种仿真分析手段,并可对设计结果进行成品率分析与优化,从而大大提高了复杂电路的设计效率,是非常优秀的微波电路、系统信号链路的设计工具。主要应用于:射频和微波电路的设计,通信系统的设计,DSP设计和向量仿真。现在最新的版本是ADS2005A。Ansoft Designer,是Ansoft公司推出的微波电路和通信系统仿真软件;它采用了最新的视窗技术,是第一个将高频电路系统,版图和电磁场仿真工具无缝地集成到同一个环境的设计工具,这种集成不是简单和界面集成,其关键是Ansoft Designer独有的"按需求解"的技术,它使你能够根据需要选择求解器,从而实现对设计过程的完全控制。AnsoftDesigner实现了“所见即所得”的自动化版图功能,版图与原理图自动同步,大大提高了版图设计效率。同时,Ansoft还能方便地与其他设计软件集成到一起,并可以和测试仪器连接,完成各种设计任务,如频率合成器,锁相环,通信系统,雷达系统以及放大器,混频器,滤波器,移相器,功率分配器,合成器和微带天线等。主要应用于:射频和微波电路的设计,通信系统的设计,电路板和模块设计,部件设计。

硬件上的最主要区别在于PWM发生电路不同。

考虑如下全桥电路:

此电路中,左半桥臂与右半桥臂用于驱动变压器原边绕组或是直流电机时,传统控制方法类似先开左半桥臂上管与右半桥臂下管,然后关断左半桥臂上管和右半桥臂下管,经过若干死区时间后开启左半桥臂下管和右半桥臂上管。在传统PWM工作过程中,这两个开关的开启和关闭时同时的。

而移相全桥相当于,想要开通左半桥臂的上管和右半桥臂的下管,要先开通左半桥臂的上管,经过一段时间后在开通右半桥臂的下管,关闭时也是先关左半桥臂的上管与右半桥臂的下管(也称左半桥臂为超前桥臂,右半桥臂为滞后桥臂),另两个开关管也是左先开,先关。

好处就是与传统PWM控制方法相比,移相PWM能够形成软开关条件,节约开通关断损耗。

细节请参考“移相全桥软开关”。

由于超前和滞后的存在,所以与传统PWM控制相比,硬件上要求栅极驱动能够满足此超前滞后要求(比如上下两个桥臂的驱动是没有互锁保护的(有互锁保护也可以,但是输入波形要满足时序),或是带使能端的),还有PWM的产生电路也要能够产生相应波形(比如单片机、DSP等可编程的方案可以产生,但是一些PWM发生芯片就不可以)。

名校一般都有的,看他们有没有信息/科学/计算机/软硬件方向的专业

由于成本提高和产品周期缩短,芯片开发者正致力于芯片设计的一次性成功。在芯片的设计过程中,制造商正在使用一些方法帮助设计者理解和实现面向制造(DFM)的设计技术。他们具备芯片效果、工艺细节、制造成本方面的知识,能够给设计者提供指导,帮助设计者提高产量并降低芯片成本。

【芯片设计一次性成功的重要性】

随着工艺技术的进步,芯片的制造成本提高了。每一次工艺结点的换代升级会带来更高密度和更高性能IC的产生,同时导致掩膜成本的增加。

延长光学平版印刷寿命需要使用光学模式校正、光学近似检查(OPC),以及深亚微米工艺的移相掩膜(PSM)装置。这导致产生了针对180nm以下工艺(特别是对于定义最小特征尺寸的掩膜层)的非常复杂的光掩膜技术。随着工艺结点变小,晶圆加工和EDA工具的成本、设计复杂IC所需的时间也随之增加。

掩膜和设计成本的提高,使得对于复杂的芯片设计,其SoC的NRE费用达到数百万美元。逐步增加的NRE成本使得“盈亏平衡点”芯片量(芯片开发者能够补偿NRE支出的芯片量)达到更高的层次。这也给芯片制造商(同样包括集成设备制造商)带来了降低设计成本和减少设计重复的巨大压力。由于消费产品领域(比如数字照相机、MP3播放器和蜂窝电话)严峻的竞争形势,缩短产品上市时间也迫使设计者努力保证芯片设计首次成功。这种成功对于很多产品的尽快上市是非常重要的,否则,可能意味着芯片制造商将失去该类产品的芯片市场份额。

【致力于芯片设计一次性成功】

说明芯片设计一次性成功的必要性是容易的,难的是怎样达到这个目标。有很多因素影响芯片设计一次性成功,包括设计工具、设计方法学、单元库、硅IP或内核、芯片的测试。你需要考虑所有这些因素,确定如何用最少设计时间和费用获得成功芯片设计的最佳方法。

在基于IP的设计中,获得芯片设计一次性成功的关键因素是建立芯片制造商和IP提供商之间的全面合作,特别是当芯片设计者接近关键的、面向生产的设计阶段时。ARM代工计划是一种创新的商业模式,它允许半导体设计公司获得ARM处理器技术用于先进的SoC解决方案的设计和制造。它也有利于半导体设计公司和芯片制造商的第三方合作伙伴,使他们加速基于ARM内核设计的上市时间,也使得OEM厂商在不接触制作设备的情况下,直接使用被认可的ARM半导体工艺。

另一方面,越来越多的工程师在使用经认可的硅验证分类、经产品证明的特定代工IP,这正是TSMC设计服务IP联盟的支柱产品。TSMC的设计支持包含了由经验丰富的IC设计中心组成的全球性网络,保证了设计者能够正确使用TSMC的IP产品。它由TSMC的验证程序支持,保证了用户在拿到IP之前,期望的所有IP已经在实际的硅片上被证明正确。在TSMC硅片上的内核验证保证了用户把最好的设计经验、最容易的设计复用和最快速的IP整合到全部设计中。特定市场的、硅片验证的IP包括来自于领先的IP库和SIP提供商的处理器内核、DSP引擎、专用I/O和混合信号功能,它们适用于计算机、消费电子和通信领域。

TSMC在现行的产品中为用户提供5种ARM内核,这5种内核包括ARM7TDMI内核、ARM926EJ内核、ARM922T内核、ARM946E内核和ARM1022E内核。这种广泛的选择给用户提供了一个通过ARM代工计划直接升级ARM内核到最新微处理器技术的途径。

【设计工具】

一套好的EDA工具对芯片设计是非常重要的。从顶层来看,这些工具包含了芯片开发的三个领域:前端设计、后端设计和设计验证。

前端设计工具将完成从芯片逻辑部分的概念化设计到芯片逻辑门级表示的工作,其中概念化设计由下列任务组成,系统级设计和分析、寄存器传输级(RTL)设计和分析、逻辑综合和优化。前端设计可能也包含一些平面布局的设计,它对芯片的物理实现之前的设计验证有所帮助。

后端设计描述了如何使设计结构在芯片上物理实现,关键是芯片的硅内核和库单元的布局和布线。在物理设计期间,布局和布线工具比影响芯片时序的互连寄生效应的前端工具有更加精确的功能。这种能力使得布局布线工具在完成设计优化的同时,也能定义芯片的物理布局。布局布线工具能够帮助设计者应付各种设计约束,比如速度、功耗、硅片面积。后端设计必须使用能够精确反映硅片特性的器件和连线模型,这就需要与正在对那种特定芯片进行工艺处理的制造商保持密切的联系。再次强调,在这个领域,EDA设计者和硅片制造商之间的合作努力是非常重要的。

在芯片设计期间,涉及到设计验证的工作是最耗费时间的,验证将保证芯片满足功能、时序、功率和其他指标的要求。验证占用了整个设计时间的大约70%,因为它必须在所有的设计层面上进行,包括系统级、RTL级、逻辑门级和物理级,后面的验证还会涉及到选择器件和互连寄生效应的问题。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11306868.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-15
下一篇 2023-05-15

发表评论

登录后才能评论

评论列表(0条)

保存