形态学图像处理

形态学图像处理,第1张

1、dilate函数

该函数能够实现二值图像的膨胀 *** 作,有以下形式:

BW2=dilate(BW1,SE)

BW2=dilate(BW1,SE,…,n)

其中:BW2=dilate(BW1,SE)表示使用二值结构要素矩阵SE队图像数据矩阵BW1执行膨胀 *** 作。输入图像BW1的类型为double或unit8,输出图像BW2的类型为unit8。BW2=dilate(BW1,SE,…,n)表示执行膨胀 *** 作n次。

2、erode 函数

该函数能够实现二值图像的腐蚀 *** 作,有以下形式:

BW2= erode(BW1,SE)

BW2= erode(BW1,SE,…,n)

其中:BW2= erode(BW1,SE)表示使用二值结构要素矩阵SE队图像数据矩阵BW1执行腐蚀 *** 作。输入图像BW1的类型为double或unit8,输出图像BW2的类型为unit8。BW2= erode(BW1,SE,…,n)表示执行腐蚀 *** 作n次。

3、bwmorph函数

该函数的功能是能实现二值图像形态学运算。它的格式如下:

① BW2=bwmorph(BW1,operation)

② BW2=bwmorph(BW1,operation,n)

其中:对于格式①,bwmorph函数可对二值图像BW1采用指定的形态学运算;对于格式②,bwmorph函数可对二值图像BW1采用指定的形态学运算n次。operation为下列字符串之一:

‘clean’:除去孤立的像素(被0包围的1)

‘close’:计算二值闭合

‘dilate’:用结构元素计算图像膨胀

‘erode’:用结构元素计算图像侵蚀

4、imclose函数

该函数功能是对灰度图像执行形态学闭运算,即使用同样的结构元素先对图像进行膨胀 *** 作后进行腐蚀 *** 作。调用格式为:

IM2=imclose(IM,SE)

IM2=imclose(IM,NHOOD)

5、imopen函数

该函数功能是对灰度图像执行形态学开运算,即使用同样的结构元素先对图像进行腐蚀 *** 作后进行膨胀 *** 作。调用格式为:

IM2=imopen(IM,SE)

IM2=imopen(IM,NHOOD)

3用MATLAB编程实现图像去噪

3.1 二值形态学消除图像噪声

用二值形态学方法对图像中的噪声进行滤除的基本思想[4]是:使用具有一定形态的结构元素去度量和提取图像中的对应形状,以达到消除图像噪声的目的。下面是二值形态学消除图像噪声的一个实例。

首先将tire.tif图像加入椒盐噪声,这种噪声前面已经介绍过,它在亮的图像区域内是暗点,而在暗的图像区域内是亮点,再对有噪声图像进行二值化 *** 作,再对有噪声图像进行开启 *** 作,由于这里的结构元素矩阵比噪声的尺寸要大,因而开启的结果是将背景上的噪声点去除了,最后对前一步得到的图像进行闭合 *** 作,将轮胎上的噪声点去掉了。

下面是算法实现的程序代码:

I1=imread('tire.tif')%读灰度图tire.tif

I2=imnoise(I1,'salt &pepper') %在图像上加入椒盐噪声

figure,imshow(I2) %显示加椒盐噪声后的灰度图像

I3=im2bw(I1)%把加椒盐噪声后的灰度图像二值化

figure,imshow(I3) %显示二值化后的图像

I4=bwmorph(I3,'open') %对二值噪声图像进行二值形态学开运算

figure,imshow(I4) %显示开运算后的图像

I5=bwmorph(I4,'close') %对上述图像进行形态学闭运算

figure,imshow(I5) %显示最终处理后的图像

图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 

目前比较经典的图像去噪算法主要有以下三种: 

均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 

中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。 

实验一:均值滤波对高斯噪声的效果 

I=imread('C:\Documents and Settings\Administrator\桌面\1.gif')%读取图像


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11313881.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-15
下一篇 2023-05-15

发表评论

登录后才能评论

评论列表(0条)

保存