%读原始图像%
format long
Blurred=imread('fig525(b).bmp')
subplot(1,2,1)imshow( Blurred)title('原图像')
%自编函数进行维纳滤波%
k=0.0025
[m,n]=size(Blurred)
spectrum=zeros(m,n)
H=zeros(m,n)
for u=1:m
for v=1:n
H(u,v)=exp(-k*((u-m/2)^2+(v-n/2)^2)^(5/6))
spectrum(u,v)=H(u,v)^2
end
end
f=double(Blurred)
F1=fftshift(fft2(f))
HW=H./(spectrum+0.001)
restore1=HW.*F1
restored=real(ifft2(ifftshift(restore1)))
subplot(1,2,2)imshow(restored,[])title('自编函数进行维纳滤波')
%调用matlab提供的维纳滤波函数%
figure
hw1=real(ifft2(ifftshift(H)))%转化到空域上来
result1=deconvwnr(Blurred,hw1,0.001)
result2=ifftshift(result1)%再去图像进行1,3象限对调,2与4象限对调
subplot(1,2,1)imshow(result2,[])title('调用维纳滤波函数')
所谓反卷积就是把Iout再变回Iin的过程,也就是去除了滤波器的效应。
但是这个过程往往比较困难。因为卷积 *** 作往往会使得图像丢失信息,比如低通后的图像高频已经丢失,丢失的信息自然无法复原了。
尤其是实际中污染图像的系统往往还是未知的(噪声,人为破坏),这就使恢复变得更为困难,在本科课程中,看见过一个最优化的恢复滤波器,即维纳滤波,其可以比较好(从误差角度上考虑)的恢复出图像原始的样子。
图像处理反卷积的应用
最早支持反卷积是因为图像去噪跟去模糊,知道图像去模糊时候会使用反卷积技术,那个是真正的反卷积计算,会估算核,会有很复杂的数学推导,主要用在图像的预处理与数字信号处理中。
本质上反卷积是一种图像复原技术,典型的图像模糊可以看成事图像卷积 *** 作得到的结果,把模糊图像重新复原为清晰图像的过程常常被称为去模糊技术,根据模糊的类别不同可以分为运动模糊与离焦模糊,OpenCV支持对这两张模糊图像进行反卷积处理得到清晰图像。
反卷积的基本原理就是把图像转换到频率域,通过估算图像的核函数,在频率域对图像点乘计算之后,重新获取图像信息,转回为空间域。
主要 *** 作都在频率域,转换通过离散傅里叶(DFT)变换与反变换,通过维纳滤波处理获取反模糊信息,OpenCV支持反卷积采用维纳滤波方式的去模糊,但是参数调整事一个大坑,基本上每张图像的参数都不一样,很难有相同的结果。
最近这些年,图像反模糊逐步被深度学习的方法引领,OpenCV提供的那几个函数越来越少的人知道,主要是通用性很差。
卷积在图像处理的应用中一般是卷积滤波,即用一个卷积模板(卷积核/滤波器)去进行滤波,而傅里叶变换在信号处理中往往是变换时域和频域,在图像处理中便是空域和频域。
图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。
常用方法
1 )图像变换
由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理。
2 )图像编码压缩
图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3 )图像增强和复原
图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
4 )图像分割
图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)