此篇属于前端算法入门系列的第一篇,主要介绍常用的 数组方法 、 字符串方法 、 遍历方法 、 高阶函数 、 正则表达式 以及相关 数学知识 。
在尾部追加,类似于压栈,原数组会变。
在尾部d出,类似于出栈,原数组会变。数组的 push &pop 可以模拟常见数据结构之一:栈。
在头部压入数据,类似于入队,原数组会变。
在头部d出数据,原数组会变。数组的 push(入队) &shift(出队) 可以模拟常见数据结构之一:队列。
concat会在当前数组尾部拼接传入的数组,然后返回一个新数组,原数组不变。
在数组中寻找该值,找到则返回其下标,找不到则返回-1。
在数组中寻找该值,找到则返回true,找不到则返回false。
将数组转化成字符串,并返回该字符串,不传值则默认逗号隔开,原数组不变。
翻转原数组,并返回已完成翻转的数组,原数组改变。
从start 开始截取到end,但是不包括end
可参考 MDN:Sort
将数组转化成字符串,并返回该字符串,逗号隔开,原数组不变。
返回指定索引位置处的字符。类似于数组用中括号获取相应下标位置的数据。
类似数组的concat(),用来返回一个合并拼接两个或两个以上字符串。原字符串不变。
indexOf,返回一个字符在字符串中首次出现的位置,lastIndexOf返回一个字符在字符串中最后一次出现的位置。
提取字符串的片断,并把提取的字符串作为新的字符串返回出来。原字符串不变。
使用指定的分隔符将一个字符串拆分为多个子字符串数组并返回,原字符串不变。
match()方法可在字符串内检索指定的值,或找到一个或多个正则表达式的匹配,并返回一个包含该搜索结果的数组。
注意事项 :如果match方法没有找到匹配,将返回null。如果找到匹配,则 match方法会把匹配到以数组形式返回,如果正则规则未设置全局修饰符g,则 match方法返回的数组有两个特性:input和index。input属性包含整个被搜索的字符串。index属性包含了在整个被搜索字符串中匹配的子字符串的位置。
replace接收两个参数,参数一是需要替换掉的字符或者一个正则的匹配规则,参数二,需要替换进去的字符,仔实际的原理当中,参数二,你可以换成一个回调函数。
在目标字符串中搜索与正则规则相匹配的字符,搜索到,则返回第一个匹配项在目标字符串当中的位置,没有搜索到则返回一个-1。
toLowerCase把字母转换成小写,toUpperCase()则是把字母转换成大写。
includes、startsWith、endsWith,es6的新增方法,includes 用来检测目标字符串对象是否包含某个字符,返回一个布尔值,startsWith用来检测当前字符是否是目标字符串的起始部分,相对的endwith是用来检测是否是目标字符串的结尾部分。
返回一个新的字符串对象,新字符串等于重复了指定次数的原始字符串。接收一个参数,就是指定重复的次数。原字符串不变。
最常用的for循环,经常用的数组遍历,也可以遍历字符串。
while、do while主要的功能是,当满足while后边所跟的条件时,来执行相关业务。这两个的区别是,while会先判断是否满足条件,然后再去执行花括号里面的任务,而do while则是先执行一次花括号中的任务,再去执行while条件,判断下次还是否再去执行do里面的 *** 作。也就是说 do while至少会执行一次 *** 作 .
拷贝一份遍历原数组。
for…of是ES6新增的方法,但是for…of不能去遍历普通的对象, for…of的好处是可以使用break跳出循环。
面试官:说一下 for...in 和 for...of 区别?
返回一个布尔值 。当我们需要判定数组中的元素是否满足某些条件时,可以使用every / some。这两个的区别是,every会去判断判断数组中的每一项,而 some则是当某一项满足条件时返回。
reduce 从左到右将数组元素做“叠加”处理,返回一个值。reduceRight 从右到左。
Object.keys方法的参数是一个对象,返回一个数组。该数组的成员都是该对象自身的(而不是继承的)所有属性名,且只返回可枚举的属性。
Object.getOwnPropertyNames方法与Object.keys类似,也是接受一个对象作为参数,返回一个数组,包含了该对象自身的所有属性名。但它能返回不可枚举的属性。
这里罗列一些我在刷算法题中遇到的正则表达式,如果有时间可认真学一下正则表达式不要背。
持续更新,敬请期待……
若一个正整数无法被除了1 和它自身之外的任何自然数整除,则称该数为质数(或素数),否则称该正整数为合数。
持续更新,敬请期待……
作者:摆草猿
链接:https://juejin.cn/post/7087134135193436197
最基本的是C语言,基本上是专业的程序员的第一所学校C,则C + +是C的C的基础上发展起来的完全兼容,并且取得了很大的进展(面向对象的,有兴趣你可以百度一下) 。 C#(读作C-夏普)是C的发展就像在其他方向,更易于使用,您可以编写一个应用程序或做网页。Java语言也是非常著名的最大的特点是跨平台(Java虚拟机上通过软件层面完全运行,而不重视硬件问题),使用非常很广,它可以可以说,和C相媲美,缺点是相对较低的营运效率(因为虚拟机正在运行)。
Python中有两个以上的不同,是一种解释型语言(当然,Java是一种半解释,这不能算)是为每个执行的源代码应该再解释一次,不喜欢这两个,源代码被编译的文件(机器代码,比如windows下的共同exe文件),直接执行后编译,和Python程序员谁被称为“最美丽的语言”,因为它简单,方便理解,易于使用,允许程序员没有关于语法很在意,只关心该算法本身,它几乎只要源代码,懂英文,你能理解。
还有许多其他的高级语言,有超过100种的光称为(无数其他小语种),如红宝石,Fortran语言,Prolog语言,VERLOG,F#的,基本的VBScript, JavaScript的,ASP,PHP,JSP,等等等等。
具有不同的功能和重点,难以详细,有兴趣的可以单独百度的:)
这些都是“高级语言”,和“再下方汇编语言的人,我们一般不直接接触“和”机器语言“机器语言,所以整个事情是01010111010,也看不懂,汇编语言是初学者到专业人士 - 通常看不到的接触(或者,除非你是非常,硬件很熟悉,你可以看到)
哦遍及手打,给了呗 - 想知道还有什么我能找到说话啊
算法一:快速排序算法
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。
快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。
算法步骤:
1 从数列中挑出一个元素,称为 “基准”(pivot),
2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition) *** 作。
3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
算法二:堆排序算法
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序的平均时间复杂度为Ο(nlogn) 。
算法步骤:
1.创建一个堆H[0..n-1]
2.把堆首(最大值)和堆尾互换
3.把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置
4.重复步骤2,直到堆的尺寸为1
算法三:归并排序
归并排序(Merge sort,台湾译作:合并排序)是建立在归并 *** 作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
算法步骤:
算法四:二分查找算法
二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜 素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组 为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn) 。
算法五:BFPRT(线性查找算法)
BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分 析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂 度,五位算法作者做了精妙的处理。
算法步骤:
终止条件:n=1时,返回的即是i小元素。
算法六:DFS(深度优先搜索)
深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分 支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发 现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS属于盲目搜索。
深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。
算法步骤:
上述描述可能比较抽象,举个实例:
DFS 在访问图中某一起始顶点 v 后,由 v 出发,访问它的任一邻接顶点 w1;再从 w1 出发,访问与 w1邻 接但还没有访问过的顶点 w2;然后再从 w2 出发,进行类似的访问,… 如此进行下去,直至到达所有的邻接顶点都被访问过的顶点 u 为止。
接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。
算法七:BFS(广度优先搜索)
广度优先搜索算法(Breadth-First-Search),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。BFS同样属于盲目搜索。一般用队列数据结构来辅助实现BFS算法。
算法步骤:
算法八:Dijkstra算法
戴克斯特拉算法(Dijkstra’s algorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。
该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u, v) 表示从顶点 u 到 v 有路径相连。我们以 E 表示G中所有边的集合,而边的权重则由权重函数 w: E → [0, ∞] 定义。因此,w(u, v) 就是从顶点 u 到顶点 v 的非负权重(weight)。边的权重可以想像成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知有 V 中有顶点 s 及 t,Dijkstra 算法可以找到 s 到 t的最低权重路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。对于不含负权的有向图,Dijkstra算法是目前已知的最快的单源最短路径算法。
算法步骤:
重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止
算法九:动态规划算法
动态规划(Dynamic programming)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。 动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。
动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。 通常许多 子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量: 一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个 子问题解之时直接查表。 这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。
关于动态规划最经典的问题当属背包问题。
算法步骤:
算法十:朴素贝叶斯分类算法
朴素贝叶斯分类算法是一种基于贝叶斯定理的简单概率分类算法。贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下, 如何完成推理和决策任务。概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。
朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估计使用最大似然估计方法,换言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。
尽管是带着这些朴素思想和过于简单化的假设,但朴素贝叶斯分类器在很多复杂的现实情形中仍能够取得相当好的效果。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)