/** C++ function for SVD
函数原型:
bool svd(vector<vector<double>>A, int K, std::vector<std::vector<double>>&U, std::vector<double>&S, std::vector<std::vector<double>>&V)
其中
A是输入矩阵,假设A的维数是m*n,那么本函数将A分解为U diag(S) V'
其中U是m*K的列正交的矩阵. V是n*K的列正交矩阵,S是K维向量。K由第二个参数指定。
U的第i列是A的第i大奇异值对应的左歧义向量,S[i]=A的第 i大奇异值,V的第i列是A的第i大奇异值对应的右歧义响亮.
K是需要分解的rank,0<K<=min(m,n)
本程序采用的是最基本幂迭代算法,在linux g++下编译通过
**/
#include <cmath>
#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <vector>
using namespace std
const int MAX_ITER=100000
const double eps=0.0000001
double get_norm(double *x, int n){
double r=0
for(int i=0i<ni++)
r+=x[i]*x[i]
return sqrt(r)
}
double normalize(double *x, int n){
double r=get_norm(x,n)
if(r<eps)
return 0
for(int i=0i<ni++)
x[i]/=r
return r
}
inline double product(double*a, double *b,int n){
double r=0
for(int i=0i<ni++)
r+=a[i]*b[i]
return r
}
void orth(double *a, double *b, int n){//|a|=1
double r=product(a,b,n)
for(int i=0i<ni++)
b[i]-=r*a[i]
}
bool svd(vector<vector<double>>A, int K, std::vector<std::vector<double>>&U, std::vector<double>&S, std::vector<std::vector<double>>&V){
int M=A.size()
int N=A[0].size()
U.clear()
V.clear()
S.clear()
S.resize(K,0)
U.resize(K)
for(int i=0i<Ki++)
U[i].resize(M,0)
V.resize(K)
for(int i=0i<Ki++)
V[i].resize(N,0)
srand(time(0))
double *left_vector=new double[M]
double *next_left_vector=new double[M]
double *right_vector=new double[N]
double *next_right_vector=new double[N]
while(1){
for(int i=0i<Mi++)
left_vector[i]= (float)rand() / RAND_MAX
if(normalize(left_vector, M)>eps)
break
}
int col=0
for(int col=0col<Kcol++){
double diff=1
double r=-1
for(int iter=0diff>=eps &&iter<MAX_ITERiter++){
memset(next_left_vector,0,sizeof(double)*M)
memset(next_right_vector,0,sizeof(double)*N)
for(int i=0i<Mi++)
for(int j=0j<Nj++)
next_right_vector[j]+=left_vector[i]*A[i][j]
r=normalize(next_right_vector,N)
if(r<eps) break
for(int i=0i<coli++)
orth(&V[i][0],next_right_vector,N)
normalize(next_right_vector,N)
for(int i=0i<Mi++)
for(int j=0j<Nj++)
next_left_vector[i]+=next_right_vector[j]*A[i][j]
r=normalize(next_left_vector,M)
if(r<eps) break
for(int i=0i<coli++)
orth(&U[i][0],next_left_vector,M)
normalize(next_left_vector,M)
diff=0
for(int i=0i<Mi++){
double d=next_left_vector[i]-left_vector[i]
diff+=d*d
}
memcpy(left_vector,next_left_vector,sizeof(double)*M)
memcpy(right_vector,next_right_vector,sizeof(double)*N)
}
if(r>=eps){
S[col]=r
memcpy((char *)&U[col][0],left_vector,sizeof(double)*M)
memcpy((char *)&V[col][0],right_vector,sizeof(double)*N)
}else
break
}
delete [] next_left_vector
delete [] next_right_vector
delete [] left_vector
delete [] right_vector
return true
}
void print(vector<vector<double>>&A){
for(int i=0i<A.size()i++){
for(int j=0j<A[i].size()j++){
cout<<setprecision(3)<<A[i][j]<<' '
}
cout<<endl
}
}
int main(){
int m=10
int n=5
srand(time(0))
vector<vector<double>>A
A.resize(m)
for(int i=0i<mi++){
A[i].resize(n)
for(int j=0j<nj++)
A[i][j]=(float)rand()/RAND_MAX
}
print(A)
cout<<endl
vector<vector<double>>U
vector<double>S
vector<vector<double>>V
svd(A,2,U,S,V)
cout<<"U="<<endl
print(U)
cout<<endl
cout<<"S="<<endl
for(int i=0i<S.size()i++){
cout<<S[i]<<' '
}
cout<<endl
cout<<"V="<<endl
print(V)
return 0
}
在MATLAB里打开svd的源码可以看到只有一堆注释,最后写的是该函数为built-in function。事实上,MATLAB的矩阵计算使用的是Intel的MKL库(见之前我写的一个答案如何写出比 MATLAB 更快的矩阵运算程序? - 过拟合的回答),这个库基本是现有BLAS/LAPACK实现中最快的了。svd是LAPACK中的标准运算,因此MATLAB实际是使用的MKL库来做svd。MKL作为一个商业库,其算法细节和代码是不公开的,而且业界对于这种基本算法必然会有非常独到的优化,涉及到大量细节(算法本身的细节,以及代码层次的细节)。svd的经典算法有Golub-Kahan算法、分治法、Jacobi法几种,我推测MKL具体实现的是分治法。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)