几种经典排序算法优劣比较的C++程序实现

几种经典排序算法优劣比较的C++程序实现,第1张

一、低级排序算法

1.选择排序

(1)排序过程

给定一个数值集合,循环遍历集合,每次遍历从集合中选择出最小或最大的放入集合的开头或结尾的位置,下次循环从剩余的元素集合中遍历找出最小的并如上 *** 作,最后直至所有原集合元素都遍历完毕,排序结束。

(2)实现代码

//选择排序法

template

void Sort::SelectSort(T* array, int size)

{

int minIndex;

for(int i = 0; i <size; i++)

{

minIndex = i;

for(int j = i + 1; j <size; j++)

{

if(array[minIndex] >array[j])

{

minIndex = j;

}

}

if(minIndex != i)

{

Swap(array, i, minIndex);

}

}

}

(3)分析总结

选择排序时间复杂度比较高,达到了O(n^2),每次选择都要遍历一遍无序区间。选择排序对一类重要的元素序列具有较好的效率,就是元素规模很大,而排序码却比较小的序列。另外要说明的是选择排序是一种不稳定的排序方法。

2.冒泡排序

(1)排序过程

冒泡排序的过程形如其名,就是依次比较相邻两个元素,优先级高(或大或小)的元素向后移动,直至到达序列末尾,无序区间就会相应地缩小。下一次再从无序区间进行冒泡 *** 作,依此循环直至无序区间为1,排序结束。

(2)实现代码

//冒泡排序法

template

void Sort::BubbleSort(T* array, int size)

{

for(int i = 0; i <size; i++)

{

for(int j = 1; j <size - i; j++)

{

if(array[j] <array[j - 1])

{

Swap(array, j, j - 1);

}

}

}

}

(3)分析总结

冒泡排序的时间复杂度也比较高,达到O(n^2),每次遍历无序区间都将优先级高的元素移动到无序区间的末尾。冒泡排序是一种稳定的排序方式。

二、高级排序算法

(1)排序过程

归并排序的原理比较简单,也是基于分治思想的。它将待排序的元素序列分成两个长度相等的子序列,然后为每一个子序列排序,然后再将它们合并成一个序列。

(2)实现代码

//归并排序

template

void Sort::MergeSort(T* array, int left, int right)

{

if(left <right)

{

int mid = (left + right) / 2;

MergeSort(array, left, mid);

MergeSort(array, mid + 1, right);

Merge(array, left, mid, right);

}

}

//合并两个已排好序的子链

template

void Sort::Merge(T* array, int left, int mid, int right)

{

T* temp = new T[right - left + 1];

int i = left, j = mid + 1, m = 0;

while(i <= mid &&j <= right)

{

if(array[i] <array[j])

{

temp[m++] = array[i++];

}

else

{

temp[m++] = array[j++];

}

}

while(i <= mid)

{

temp[m++] = array[i++];

}

while(j <= right)

{

temp[m++] = array[j++];

}

for(int n = left, m = 0; n <= right; n++, m++)

{

array[n] = temp[m];

}

delete temp;

}

(3)分析总结

归并排序最好、最差和平均时间复杂度都是O(nlogn),是一种稳定的排序算法。

对于一名优秀的程序员来说,面对一个项目的需求的时候,一定会在脑海里浮现出最适合解决这个问题的方法是什么,选对了算法,就会起到事半功倍的效果,反之,则可能会使程序运行效率低下,还容易出bug。因此,熟悉掌握常用的算法,是对于一个优秀程序员最基本的要求。

那么,常用的算法都有哪些呢?一般来讲,在我们日常工作中涉及到的算法,通常分为以下几个类型:分治、贪心、迭代、枚举、回溯、动态规划。下面我们来一一介绍这几种算法。

一、分治算法

分治算法,顾名思义,是将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

分治算法一般分为三个部分:分解问题、解决问题、合并解。

分治算法适用于那些问题的规模缩小到一定程度就可以解决、并且各子问题之间相互独立,求出来的解可以合并为该问题的解的情况。

典型例子比如求解一个无序数组中的最大值,即可以采用分治算法,示例如下:

def pidAndConquer(arr,leftIndex,rightIndex):

if(rightIndex==leftIndex+1 || rightIndex==leftIndex){

return Math.max(arr[leftIndex],arr[rightIndex])

}

int mid=(leftIndex+rightIndex)/2

int leftMax=pidAndConquer(arr,leftIndex,mid)

int rightMax=pidAndConquer(arr,mid,rightIndex)

return Math.max(leftMax,rightMax)

二、贪心算法

贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。

贪心算法的基本思路是把问题分成若干个子问题,然后对每个子问题求解,得到子问题的局部最优解,最后再把子问题的最优解合并成原问题的一个解。这里要注意一点就是贪心算法得到的不一定是全局最优解。这一缺陷导致了贪心算法的适用范围较少,更大的用途在于平衡算法效率和最终结果应用,类似于:反正就走这么多步,肯定给你一个值,至于是不是最优的,那我就管不了了。就好像去菜市场买几样菜,可以经过反复比价之后再买,或者是看到有卖的不管三七二十一先买了,总之最终结果是菜能买回来,但搞不好多花了几块钱。

典型例子比如部分背包问题:有n个物体,第i个物体的重量为Wi,价值为Vi,在总重量不超过C的情况下让总价值尽量高。每一个物体可以只取走一部分,价值和重量按比例计算。

贪心策略就是,每次都先拿性价比高的,判断不超过C。

三、迭代算法

迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程。迭代算法是用计算机解决问题的一种基本方法,它利用计算机运算速度快、适合做重复性 *** 作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。最终得到问题的结果。

迭代算法适用于那些每步输入参数变量一定,前值可以作为下一步输入参数的问题。

典型例子比如说,用迭代算法计算斐波那契数列。

四、枚举算法

枚举算法是我们在日常中使用到的最多的一个算法,它的核心思想就是:枚举所有的可能。枚举法的本质就是从所有候选答案中去搜索正确地解。

枚举算法适用于候选答案数量一定的情况。

典型例子包括鸡钱问题,有公鸡5,母鸡3,三小鸡1,求m钱n鸡的所有可能解。可以采用一个三重循环将所有情况枚举出来。代码如下:

五、回溯算法

回溯算法是一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。

许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。

典型例子是8皇后算法。在8 8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问一共有多少种摆法。

回溯法是求解皇后问题最经典的方法。算法的思想在于如果一个皇后选定了位置,那么下一个皇后的位置便被限制住了,下一个皇后需要一直找直到找到安全位置,如果没有找到,那么便要回溯到上一个皇后,那么上一个皇后的位置就要改变,这样一直递归直到所有的情况都被举出。

六、动态规划算法

动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

动态规划算法适用于当某阶段状态给定以后,在这阶段以后的过程的发展不受这段以前各段状态的影响,即无后效性的问题。

典型例子比如说背包问题,给定背包容量及物品重量和价值,要求背包装的物品价值最大。

汗~~楼上的......

不说了...一看就知道没学过数据结构

程序的算法效率 看原 *** 作重复执行的次数....

你写的这个算法时间复杂度是常量级的...

当n<=1时,循环0次.

n>1时,分两种情况.1.n是奇数.循环循环两次.2.n是偶数,循环1次

所以时间的上界是2,下界是0


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11409270.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-15
下一篇 2023-05-15

发表评论

登录后才能评论

评论列表(0条)

保存