求Smith圆图程序(用MATLAB或VB或VC)

求Smith圆图程序(用MATLAB或VB或VC),第1张

%Victor Aprea Cornell University 6/27/02

%

%Usage: plotsmithchart(Zl,Zo)

% where Zl is the Load Impedence (possibly complex)

% and Zo is the Characteristic Line Impedence

% Plots a smith chart, along with the reflection coefficient circle

% and the line of intersection with resistive component equal to 1.

% plotsmithchart

% Without any parameters draws a blank smith chart.

% Wavelengths toward the generator are labeled around the perimeter

%

%For example: plotsmithchart(25,50)

% Draws a smithchart, calculates and plots the reflection coefficient

% for a characteristic impedence of 50 ohms and a load impedence of 25 ohms,

% and draws the line of intersection with the R=1 circle.

function answer = plotSmithChart(Zl,Zo)

constant = linspace(0,10,5)

phaseAngle = linspace(0,2*pi,50)

unitGamma = exp(j*phaseAngle)

%plot the unit circle in the complex plane

hold on

plot(real(unitGamma),imag(unitGamma),'r')

%set(gcf,'Position',[0 0 1280 990])

axis square

zoom on

axis([-1.1 1.1 -1.1 1.1])

MAX=2001

bound2=0

bound3=0

min_bound1=0

min_bound2=0

max_bound2=0

H=0

word=0

Gr = linspace(-1,1,MAX)

hold on

interval = [[.01:.01:.2],[.22:.02:.5],[.55:.05:1],[1.1:.1:2],[2.2:.2:5],[6:10],[12:2:20],[30:10:50]]

interval2= [[.01:.01:.5],[.55:.05:1],[1.1:.1:2],[2.2:.2:5],[6:10],[12:2:20],[30:10:50]]

%plot real axis

plot(Gr, zeros(1,length(Gr)),'r')

%equations were derived using the symbolic toolbox as follows

%solve('R=(1-Gr^2-Gi^2)/((1-Gr)^2+Gi^2)','Gi')

%bound was derived as follows

%solve('1/(R+1)*(-(R+1)*(R-2*R*Gr+R.*Gr^2-1+Gr^2))^(1/2)=0','Gr')

for R = interval2,

min_bound1 = (R-1)/(R+1)

if(R<.2)

if(mod(R,.1)==0)

max_bound = (-1+2^2+R^2)/(2^2+R^2+2*R+1)

elseif(mod(R,.02)==0)

max_bound = (-1+.5^2+R^2)/(.5^2+R^2+2*R+1)

else

max_bound = (-1+.2^2+R^2)/(.2^2+R^2+2*R+1)

if(R==.05 | (R<.151 &R>.149))

min_bound2 = (-1+.5^2+R^2)/(.5^2+R^2+2*R+1)

max_bound2 = (-1+1^2+R^2)/(1^2+R^2+2*R+1)

end

end

elseif(R<1)

if(mod(R,.2)==0)

max_bound = (-1+5^2+R^2)/(5^2+R^2+2*R+1)

elseif(mod(R,.1)==0)

max_bound = (-1+2^2+R^2)/(2^2+R^2+2*R+1)

elseif(R==.25 | R==.35 | R==.45)

temp = (-1+.5^2+R^2)/(.5^2+R^2+2*R+1)

min_bound2 = max(min_bound1, temp)

max_bound = (-1+1^2+R^2)/(1^2+R^2+2*R+1)

elseif(R<.5)

max_bound = (-1+.5^2+R^2)/(.5^2+R^2+2*R+1)

else

max_bound = (-1+1^2+R^2)/(1^2+R^2+2*R+1)

end

elseif(R<5)

if(mod(R,2)==0)

max_bound = (-1+20^2+R^2)/(20^2+R^2+2*R+1)

elseif(mod(R,1)==0)

max_bound = (-1+10^2+R^2)/(10^2+R^2+2*R+1)

elseif(R>2)

max_bound = (-1+5^2+R^2)/(5^2+R^2+2*R+1)

else

if(mod(R,.2)==0)

max_bound = (-1+5^2+R^2)/(5^2+R^2+2*R+1)

else

max_bound = (-1+2^2+R^2)/(2^2+R^2+2*R+1)

end

end

elseif(R<10)

if(mod(R,2)==0)

max_bound = (-1+20^2+R^2)/(20^2+R^2+2*R+1)

else

max_bound = (-1+10^2+R^2)/(10^2+R^2+2*R+1)

end

else

if(R==10|R==20)

max_bound = (-1+50^2+R^2)/(50^2+R^2+2*R+1)

elseif(R==50)

max_bound = 1

elseif(R<20)

max_bound = (-1+20^2+R^2)/(20^2+R^2+2*R+1)

else

max_bound = (-1+50^2+R^2)/(50^2+R^2+2*R+1)

end

end

index = ceil((min_bound1+1)*(MAX-1)/2+1)

actual_value = Gr(index)

if(actual_value<min_bound1)

index = index + 1

end

MIN=index

index = ceil((max_bound+1)*(MAX-1)/2+1)

actual_value = Gr(index)

if(actual_value>max_bound)

index = index - 1

end

MIN2 = ceil((min_bound2+1)*(MAX-1)/2+1)

actual_value = Gr(MIN2)

if(actual_value<min_bound2 )

MIN2 = MIN2 + 1

end

MAX2 = ceil((max_bound2+1)*(MAX-1)/2+1)

actual_value = Gr(MAX2)

if(actual_value<max_bound2 )

MAX2 = MAX2 + 1

end

r_L_a=1/(R+1)*(-(R+1)*(R-2*R.*Gr(MIN:index)+R.*Gr(MIN:index).^2-1+Gr(MIN:index).^2)).^(1/2)

r_L_b=-1/(R+1)*(-(R+1)*(R-2*R.*Gr(MIN:index)+R.*Gr(MIN:index).^2-1+Gr(MIN:index).^2)).^(1/2)

r_L_b(1)=0

r_L_a(1)=0

r_L_a2=1/(R+1)*(-(R+1)*(R-2*R.*Gr(MIN2:MAX2)+R.*Gr(MIN2:MAX2).^2-1+Gr(MIN2:MAX2).^2)).^(1/2)

r_L_b2=-1/(R+1)*(-(R+1)*(R-2*R.*Gr(MIN2:MAX2)+R.*Gr(MIN2:MAX2).^2-1+Gr(MIN2:MAX2).^2)).^(1/2)

r_L_a3=1/(R+1)*(-(R+1)*(R-2*R.*Gr(MIN2:index)+R.*Gr(MIN2:index).^2-1+Gr(MIN2:index).^2)).^(1/2)

r_L_b3=-1/(R+1)*(-(R+1)*(R-2*R.*Gr(MIN2:index)+R.*Gr(MIN2:index).^2-1+Gr(MIN2:index).^2)).^(1/2)

%fix resolution issues in .2-.5 range

if(~(R>.2 &R<.5 &~(mod(R,.02)==0)))

if(R==1)

color = 'r'

else

color ='b'

end

plot(Gr(MIN:index),r_L_a(1:index-MIN+1),color,Gr(MIN:index), r_L_b(1:index-MIN+1),color)

if(R<=1)

if(mod(R,1)==0)

word = [num2str(R) '.0']

else

word = num2str(R)

end

if(mod(R,.1)==0)

set(text(Gr(MIN),0,word),'Rotation',90,'HorizontalAlignment','left','VerticalAlignment','bottom')

end

elseif(R<=2)

if(mod(R,.2)==0)

if(mod(R,1)==0)

word = [num2str(R) '.0']

else

word = num2str(R)

end

set(text(Gr(MIN),0,word),'Rotation',90,'HorizontalAlignment','left','VerticalAlignment','bottom')

end

elseif(R<=5)

if(mod(R,1)==0)

set(text(Gr(MIN),0,[num2str(R) '.0']),'Rotation',90,'HorizontalAlignment','left','VerticalAlignment','bottom')

end

else

if(mod(R,10)==0)

set(text(Gr(MIN),0,num2str(R)),'Rotation',90,'HorizontalAlignment','left','VerticalAlignment','bottom')

end

end

elseif(R==.25 | R==.35 | R==.45)

plot(Gr(MIN2:index),r_L_a3,'b')

plot(Gr(MIN2:index),r_L_b3,'b')

end

if(R==.05 | (R>.149 &R<.151))

plot(Gr(MIN2:MAX2),r_L_a2(length(Gr(MIN2:MAX2))-length(r_L_a2)+1:length(r_L_a2)),'b')

plot(Gr(MIN2:MAX2),r_L_b2(length(Gr(MIN2:MAX2))-length(r_L_b2)+1:length(r_L_b2)),'b')

end

end

%equations were derived using the symbolic toolbox as follows

%solve('2*Gi/((1-Gr)^2+Gi^2)=x','Gi')

%bound was derived as follows

%solve('1-X^2+2*X^2*Gr-X^2*Gr^2=0','Gr')

%solve('1/2/X*(2+2*(1-X^2+2*X^2*Gr-X^2*Gr^2)^(1/2))=(1-Gr^2)^(1/2)','Gr')

for X = interval,

inter_bound = (-1+X^2)/(X^2+1)%intersection with unit circle: all values must be less than this\

imag_bound = (-1+X)/X%boundary of imagination: all values must be greater than this

angle_point = 0

if(inter_bound ~= 0)

angle_point = sqrt(1-inter_bound^2)/inter_bound

end

imag_bound_y = 1/2/X*(-2+2*(1-X^2+2*X^2.*inter_bound-X^2.*inter_bound.^2).^(1/2))

imag_rad = (imag_bound^2 + imag_bound_y^2)^(1/2)

condition = imag_rad <1

if(inter_bound >1)

inter_bound = 1

elseif(inter_bound <-1)

imag_bound=-1

end

if(imag_bound >1)

imag_bound = 1

elseif(imag_bound <-1)

imag_bound=-1

end

%used solve function to find intersection of appropriate circle with corresponding hyperbolics

%solve('-1/(R+1)*(-(R+1)*(R-2*R*Gr+R*Gr^2-1+Gr^2))^(1/2)=1/2/X*(-2+2*(1-X^2+2*X^2*Gr-X^2*Gr^2)^(1/2))','Gr')

%The following conditional tree creates the internal bounding between the two types of curves for variable resolution

if(X<.2)

if(mod(X,.1)==0)

max_bound = (-1+X^2+2^2)/(X^2+2^2+2*2+1)

elseif(mod(X,.02)==0)

max_bound = (-1+X^2+.5^2)/(X^2+.5^2+2*.5+1)

else

max_bound = (-1+X^2+.2^2)/(X^2+.2^2+2*.2+1)

end

elseif(X<1)

if(mod(X,.2)==0)

max_bound = (-1+X^2+5^2)/(X^2+5^2+2*5+1)

elseif(mod(X,.1)==0)

max_bound = (-1+X^2+2^2)/(X^2+2^2+2*2+1)

elseif(X<.5)

max_bound = (-1+X^2+.5^2)/(X^2+.5^2+2*.5+1)

else

max_bound = (-1+X^2+1^2)/(X^2+1^2+2*1+1)

end

elseif(X<5)

if(mod(X,2)==0)

max_bound = (-1+X^2+20^2)/(X^2+20^2+2*20+1)

elseif(mod(X,1)==0)

max_bound = (-1+X^2+10^2)/(X^2+10^2+2*10+1)

elseif(X>2)

max_bound = (-1+X^2+5^2)/(X^2+5^2+2*5+1)

else

if(mod(X,.2)==0)

max_bound = (-1+X^2+5^2)/(X^2+5^2+2*5+1)

else

max_bound = (-1+X^2+2^2)/(X^2+2^2+2*2+1)

end

end

elseif(X<10)

if(mod(X,2)==0)

max_bound = (-1+X^2+20^2)/(X^2+20^2+2*20+1)

else

max_bound = (-1+X^2+10^2)/(X^2+10^2+2*10+1)

end

else

if(X==10|X==20)

max_bound = (-1+X^2+50^2)/(X^2+50^2+2*50+1)

elseif(X==50)

max_bound = 1

elseif(X<20)

max_bound = (-1+X^2+20^2)/(X^2+20^2+2*20+1)

else

max_bound = (-1+X^2+50^2)/(X^2+50^2+2*50+1)

end

end

inter_index = ceil((inter_bound+1)*(MAX-1)/2+1)

imag_index = ceil((imag_bound+1)*(MAX-1)/2+1)

index4 = ceil((max_bound+1)*(MAX-1)/2+1)

index1 = max(inter_index,imag_index)%maximum index for c,d

index2 = min(imag_index,inter_index)%minimum index for c,d

if(condition)

index3=imag_index

else

index3=inter_index

end

actual_value1 = Gr(index1)

actual_value2 = Gr(index2)

actual_value3 = Gr(index3)

actual_value4 = Gr(index4)

if((actual_value1 >inter_bound &index1 == inter_index)|(actual_value1 >imag_bound &index1 == imag_index))

index1 = index1 - 1

end

if((actual_value2 <inter_bound &index2 == inter_index)|(actual_value2 <imag_bound &index2 == imag_index))

index2 = index2 + 1

end

if((actual_value3 <inter_bound &index3 == inter_index)|(actual_value3 <imag_bound &index3 == imag_index))

index3 = index3 + 1

end

if(actual_value4 >max_bound)

index4 = index4 - 1

end

MIN=index2

MAX2=index1

MAX3=index4

MIN2 = index3

% actual_value1 = Gr(MIN)

% actual_value2 = Gr(MAX2)

% MIN=1

% MAX2=MAX

% MIN2=1

x_L_a = real(1/2/X*(-2+2*(1-X^2+2*X^2.*Gr(MIN2:MAX3)-X^2.*Gr(MIN2:MAX3).^2).^(1/2)))

x_L_b = real(1/2/X*(2-2*(1-X^2+2*X^2.*Gr(MIN2:MAX3)-X^2.*Gr(MIN2:MAX3).^2).^(1/2)))

x_L_c= real(1/2/X*(2+2*(1-X^2+2*X^2.*Gr(MIN:MAX2)-X^2.*Gr(MIN:MAX2).^2).^(1/2)))

x_L_d= real(1/2/X*(-2-2*(1-X^2+2*X^2.*Gr(MIN:MAX2)-X^2.*Gr(MIN:MAX2).^2).^(1/2)))

if(MIN2<MAX3)

x_L_c(1)=x_L_b(1)

x_L_d(1)=x_L_a(1)

end

check1 = abs(round(10000*1/2/X*(-2-2*(1-X^2+2*X^2*inter_bound-X^2*inter_bound^2)^(1/2))))

check2 = abs(round(10000*(1-inter_bound^2)^(1/2)))

if(imag_bound >-1 &check1 == check2)

plot(Gr(MIN:MAX2),x_L_c,'g')

plot(Gr(MIN:MAX2),x_L_d,'g')

end

plot(Gr(MIN2:MAX3),x_L_a,'g')

plot(Gr(MIN2:MAX3),x_L_b,'g')

condition = Gr(MIN2)^2 + x_L_d(1)^2 >.985

if(X<=1)

if(mod(X,.1)==0)

if(mod(X,1)==0)

word = [num2str(X) '.0']

else

word = num2str(X)

end

if(X==1)

angle = 90

else

angle = -atan(angle_point)*180/pi

end

set(text(Gr(MIN2),x_L_d(1),word),'Rotation',angle,'VerticalAlignment','bottom','HorizontalAlignment','left')

set(text(Gr(MIN2),-x_L_d(1),word),'Rotation',-angle+180,'HorizontalAlignment','right','VerticalAlignment','bottom')

if(mod(X,.2)==0)

xval=X^2/(X^2+4)

yval = 1/2/X*(-2+2*(1-X^2+2*X^2*xval-X^2*xval^2)^(1/2))

angle = -atan(yval/(.5-xval))*180/pi

set(text(xval,yval,word),'Rotation',angle,'HorizontalAlignment','left','VerticalAlignment','bottom')

set(text(xval,-yval,word),'Rotation',-angle+180,'HorizontalAlignment','right','VerticalAlignment','bottom')

end

end

elseif(X<=2)

if(mod(X,.2)==0)

if(mod(X,1)==0)

word = [num2str(X) '.0']

else

word = num2str(X)

end

if(condition)

angle = -atan(angle_point)*180/pi+180

set(text(Gr(MIN2),x_L_a(1),word),'Rotation',angle,'VerticalAlignment','bottom','HorizontalAlignment','left')

set(text(Gr(MIN2),-x_L_a(1),word),'Rotation',-angle+180,'HorizontalAlignment','right','VerticalAlignment','bottom')

else

angle = -atan(angle_point)*180/pi+180

set(text(Gr(MAX2),x_L_d(length(x_L_d)),word),'Rotation',angle,'VerticalAlignment','bottom','HorizontalAlignment','left')

set(text(Gr(MAX2),-x_L_d(length(x_L_d)),word),'Rotation',-angle+180,'HorizontalAlignment','right','VerticalAlignment','bottom')

end

end

elseif(X<=5)

if(mod(X,1)==0)

if(condition)

angle = -atan(angle_point)*180/pi+180

set(text(Gr(MIN2),x_L_a(1),[num2str(X) '.0']),'Rotation',angle,'VerticalAlignment','bottom','HorizontalAlignment','left')

set(text(Gr(MIN2),-x_L_a(1),[num2str(X) '.0']),'Rotation',-angle+180,'HorizontalAlignment','right','VerticalAlignment','bottom')

else

angle = -atan(angle_point)*180/pi+180

set(text(Gr(MAX2),x_L_d(length(x_L_d)),[num2str(X) '.0']),'Rotation',angle,'VerticalAlignment','bottom','HorizontalAlignment','left')

set(text(Gr(MAX2),-x_L_d(length(x_L_d)),[num2str(X) '.0']),'Rotation',-angle+180,'HorizontalAlignment','right','VerticalAlignment','bottom')

end

end

else

if(mod(X,10)==0)

if(condition)

angle = -atan(angle_point)*180/pi+180

set(text(Gr(MIN2),x_L_a(1),num2str(X)),'Rotation',angle,'VerticalAlignment','bottom','HorizontalAlignment','left')

set(text(Gr(MIN2),-x_L_a(1),num2str(X)),'Rotation',-angle+180,'HorizontalAlignment','right','VerticalAlignment','bottom')

else

angle = -atan(angle_point)*180/pi+180

set(text(Gr(MAX2),x_L_d(length(x_L_d)),num2str(X)),'Rotation',angle,'VerticalAlignment','bottom','HorizontalAlignment','left')

set(text(Gr(MAX2),-x_L_d(length(x_L_d)),num2str(X)),'Rotation',-angle+180,'HorizontalAlignment','right','VerticalAlignment','bottom')

end

end

end

end

%plot imaginary axis

plot(zeros(1,length(Gr)),Gr,'r')

wavelengths = 0:.01:.5

angle = linspace(pi,-pi,length(wavelengths))

wave_circle = 1.05*exp(j*phaseAngle)

plot(real(wave_circle),imag(wave_circle),'r')

for i=1:length(wavelengths)-1,

x=real(1.025*exp(j*angle(i)))

y=imag(1.025*exp(j*angle(i)))

if(x>0)

rot_angle=atan(y/x)*180/pi-90

else

rot_angle=atan(y/x)*180/pi+90

end

if(wavelengths(i)==0)

word = '0.00'

elseif(mod(wavelengths(i),.1)==0)

word = [num2str(wavelengths(i)) '0']

else

word = num2str(wavelengths(i))

end

set(text(x,y,word),'Rotation',rot_angle,'VerticalAlignment','middle','HorizontalAlignment','center')

end

%plot reflection coefficient and line of intersection only if arguments are present

if(nargin == 2)

radius = abs((Zl-Zo)/(Zl+Zo))

Load_circle=radius*exp(j*phaseAngle)

plot(real(Load_circle),imag(Load_circle),'r')

slope = (-(1-radius^2)^(1/2)*radius)/(radius^2)

value=1/(1+slope^2)^(1/2)

MAX2 = ceil((value+1)*(MAX-1)/2+1)

actual_value = Gr(MAX2)

if(actual_value>value)

MAX2 = MAX2 - 1

end

%plot line of intersection

line = slope*Gr(fix(MAX/2):MAX2)

plot(Gr(fix(MAX/2):MAX2),line,'r')

end

史密夫图表又称史密斯圆图

是在反射系散平面上标绘有归一化输入阻抗(或导纳)等值圆族的计算图。

用ADS来举例,在元件库下拉栏里选择simulation-S-param库,调出来端口term,S参数仿真控件,再在smithchartmatching里把smith圆图放在两个端口中间连起来,端口记得接地,这个元件库在一堆passive的下面一个,把左面端口设置成你想要的阻抗共轭值,比如,你管子的输出阻抗是50Ω+100Ω,你就把端口设成Z=50-j*100,然后点在那个圆图标志上,单击选中,在tools里选择Smithchart,点那个Z*,设置成Z的共轭,也就是你管子输出阻抗,左面是各种串并联阻抗的形式,这个你看看就会了,记得要改你的频率,还有S参数SP1的频率也是,看你需求了,最后你应该是用一堆元件,把圆图中心的点和你想要的那个Z*连起来,在匹配的时候把circles里的Q打开,设置成1.5,你的匹配线不要超出这个范围。大概就是这样吧,具体还有要涉及到版图里微带线的问题,还是要看下书。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11441585.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-16
下一篇 2023-05-16

发表评论

登录后才能评论

评论列表(0条)

保存