求51单片机nRF24L01+无线模块的程序,收和发的,要能用的啊,谢谢了

求51单片机nRF24L01+无线模块的程序,收和发的,要能用的啊,谢谢了,第1张

#include"NRF24L01.h"

//==========================================================================

//TX_ADDRESS[TX_ADR_WIDTH]//本地地址

//RX_ADDRESS[RX_ADR_WIDTH]//接收地址

//==========================================================================

uint const TX_ADDRESS[TX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}

uint const RX_ADDRESS[RX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}

//==========================================================================

//

//bdata sta状态标志

//

//==========================================================================

uint bdata sta

sbit RX_DR =sta^6

sbit TX_DS =sta^5

sbit MAX_RT =sta^4

//==========================================================================

//函数功能: 延时1ms的时间

//函数变量: int s,int i

//函数接口: Delay()

//函数说明: 延时 i*s的时间

//==========================================================================

void Delay(unsigned int s)

{

unsigned int i

for(i=0i<si++)

for(i=0i<si++)

}

//==========================================================================

//函数功能: 延时1us的时间

//函数变量: char n

//函数接口: inerDelay_us()

//函数说明: 延时n的时间

//==========================================================================

void inerDelay_us(unsigned char n)

{

for(n>0n--)

_nop_()

}

//==========================================================================

//

//NRF24L01初始化

//

//==========================================================================

void init_NRF24L01(void)

{

inerDelay_us(100)

CE=0 // chip enable

CSN=1 // Spi disable

SCK=0 // Spi clock line init high

SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH)//写本地地址

SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, RX_ADDRESS, RX_ADR_WIDTH)//写接收端地址

SPI_RW_Reg(WRITE_REG + EN_AA, 0x01)//频道0自动 ACK应答允许

SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01)//允许接收地址只有频道0,如果需要多频道可以参考Page21

SPI_RW_Reg(WRITE_REG + RF_CH, 0) //设置信道工作为2.4GHZ,收发必须一致

SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH)//设置接收数据长度,本次设置为20字节

SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07)//设置发射速率为1MHZ,发射功率为最大值0dB

}

//===========================================================================

//

//函数功能: NRF24L01的SPI写时序

//函数接口: uint SPI_RW(uint uchar)

//

//===========================================================================

uint SPI_RW(uint uchar)

{

uint bit_ctr

for(bit_ctr=0bit_ctr<8bit_ctr++) // output 8-bit

{

MOSI = (uchar &0x80)// output 'uchar', MSB to MOSI

uchar = (uchar <<1) // shift next bit into MSB..

SCK = 1 // Set SCK high..

uchar |= MISO // capture current MISO bit

SCK = 0 // ..then set SCK low again

}

return(uchar) // return read uchar

}

//===========================================================================

//

//函数功能: NRF24L01的SPI时序

//函数接口: uchar SPI_Read(uchar reg)

//

//===========================================================================

uchar SPI_Read(uchar reg)

{

uchar reg_val

CSN = 0 // CSN low, initialize SPI communication...

SPI_RW(reg) // Select register to read from..

reg_val = SPI_RW(0) // ..then read registervalue

CSN = 1 // CSN high, terminate SPI communication

return(reg_val) // return register value

}

//==========================================================================

//

//函数功能: NRF24L01读写寄存器函数

//

//==========================================================================

uint SPI_RW_Reg(uchar reg, uchar value)

{

uint status

CSN = 0 // CSN low, init SPI transaction

status = SPI_RW(reg) // select register

SPI_RW(value)// ..and write value to it..

CSN = 1 // CSN high again

return(status) // return nRF24L01 status uchar

}

//===========================================================================

//

//函数功能: 用于读数据,reg:为寄存器地址,pBuf:为待读出数据地址,uchars:读出数据的个数

//函数接口: uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)

//

//===========================================================================

uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)

{

uint status,uchar_ctr

CSN = 0 // Set CSN low, init SPI tranaction

status = SPI_RW(reg) // Select register to write to and read status uchar

for(uchar_ctr=0uchar_ctr<ucharsuchar_ctr++)

pBuf[uchar_ctr] = SPI_RW(0) //

CSN = 1

return(status) // return nRF24L01 status uchar

}

//===========================================================================

//

//函数功能: 用于写数据:为寄存器地址,pBuf:为待写入数据地址,uchars:写入数据的个数

//函数接口: uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars)

//

//===========================================================================

uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars)

{

uint status,uchar_ctr

CSN = 0 //SPI使能

status = SPI_RW(reg)

for(uchar_ctr=0uchar_ctr<ucharsuchar_ctr++) //

SPI_RW(*pBuf++)

CSN = 1 //关闭SPI

return(status) //

}

//===========================================================================

//

//函数功能: 数据接收配置

//函数接口: void SetRX_Mode(void)

//

//===========================================================================

void SetRX_Mode(void)

{

CE=0

SPI_RW_Reg(WRITE_REG + CONFIG, 0x0f) // IRQ收发完成中断响应,16位CRC ,主接收

CE = 1

inerDelay_us(130)

}

//===========================================================================

//

//函数功能: 数据读取后放如rx_buf接收缓冲区中

//函数接口: unsigned char nRF24L01_RxPacket(unsigned char* rx_buf)

//

//===========================================================================

unsigned char nRF24L01_RxPacket(unsigned char* rx_buf)

{

unsigned char revale=0

sta=SPI_Read(STATUS) // 读取状态寄存其来判断数据接收状况

if(RX_DR) // 判断是否接收到数据

{

CE = 0//SPI使能

SPI_Read_Buf(RD_RX_PLOAD,rx_buf,TX_PLOAD_WIDTH)// read receive payload from RX_FIFO buffer

revale =1 //读取数据完成标志

}

SPI_RW_Reg(WRITE_REG+STATUS,sta) //接收到数据后RX_DR,TX_DS,MAX_PT都置高为1,通过写1来清楚中断标志

return revale

}

//==========================================================================

//

//函数功能: 发送 tx_buf中数据

//函数接口: void nRF24L01_TxPacket(unsigned char * tx_buf)

//

//==========================================================================

void nRF24L01_TxPacket(unsigned char * tx_buf)

{

CE=0 //StandBy I模式

SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH)// 装载接收端地址

SPI_Write_Buf(WR_TX_PLOAD, tx_buf, TX_PLOAD_WIDTH)// 装载数据

SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e) // IRQ收发完成中断响应,16位CRC,主发送

CE=1 //置高CE,激发数据发送

inerDelay_us(10)

}

//程序功能:实现对NRF24L01进行数据发送接收测试

//硬件电路:普中科技开发板+NRF24L01

//IO口接法:

// MCU型号STC89C52RC / NEF24L01

// MCU电源+5V / 晶振频率:12Mhz

// 微分复位:10K电阻/10uF电解电容

// ^|^ ^|^

// IRQ >|P1^0 P0^0| NRF24L01管脚接法

// MOSI >|P1^1 P0^1|1|GND 3.3V|2

// CSN >|P1^2 P0^2|3|CE CSN|4

// |P1^3 P0^3|5|SCK MOSI|6

// |P1^4 P0^4|7|MISO IRQ|8

//MISO >|P1^5 P0^5|

// SCK >|P1^6 P0^6|

// CE >|P1^7 P0^7|

//=======================================================================

//参数:调用reg52.h头文件库函数

// 声明要使用NRF24L01C程序

//=======================================================================

#include<reg52.h>

#include"NRF24L01.h"

//=======================================================================

//主函数:执行语句

//==============================================================================================

//************************************主函数************************************************************

void main(void)

{

unsigned char tf =0 //定义变量tf初值为0

unsigned char TxBuf[20]={0}//定义TxBuf[20]={0}

unsigned char RxBuf[20]={0} //定义RxBuf[20]={0}

init_NRF24L01() //初始化NRF24L01

TxBuf[1] = 1 //声明TxBuf[1] = 1

TxBuf[2] = 1 //TxBuf[2] = 1

nRF24L01_TxPacket(TxBuf) //发送 tx_buf中数据

Delay(6000) //延时六秒

while(1)

{

TxBuf[1] = 1

tf = 1

if (tf==1)

{

nRF24L01_TxPacket(TxBuf)//发送 tx_buf中数据

TxBuf[1] = 0x00

TxBuf[2] = 0x00

tf=0

Delay(5000)

P0=0xf0

}

//==================================================================

/* SetRX_Mode() //数据接收配置

nRF24L01_RxPacket(RxBuf) //数据读取后放如rx_buf接收缓冲区中

if( RxBuf[1]==1)

{

P0=0xff

}

Delay(5000)

P0=0xff

RxBuf[1] = 0x00

RxBuf[2] = 0x00*/

}

}

/** @file API.h

*

* @author Runar Kjellhaug

*

* @compiler This program has been tested with Keil C51 V7.50.

*

*

* $Date: 31.01.06 14:14 $

* $Revision: 13 $

*

*/

// Macro to read SPI Interrupt flag

#define WAIT_SPIF (!(SPI0CN &0x80)) // SPI interrupt flag(礐 platform dependent)

// Declare SW/HW SPI modes

#define SW_MODE 0x00

#define HW_MODE 0x01

#define BYTE unsigned char

// Define nRF24L01 interrupt flag's

#define IDLE0x00 // Idle, no interrupt pending

#define MAX_RT 0x10 // Max #of TX retrans interrupt

#define TX_DS 0x20 // TX data sent interrupt

#define RX_DR 0x40 // RX data received

#define SPI_CFG 0x40 // SPI Configuration register value

#define SPI_CTR 0x01 // SPI Control register values

#define SPI_CLK 0x00 // SYSCLK/2*(SPI_CLK+1) == >12MHz / 2 = 6MHz

#define SPI0E 0x02 // SPI Enable in XBR0 register

//********************************************************************************************************************//

// SPI(nRF24L01) commands

#define READ_REG0x00 // Define read command to register

#define WRITE_REG 0x20 // Define write command to register

#define RD_RX_PLOAD 0x61 // Define RX payload register address

#define WR_TX_PLOAD 0xA0 // Define TX payload register address

#define FLUSH_TX0xE1 // Define flush TX register command

#define FLUSH_RX0xE2 // Define flush RX register command

#define REUSE_TX_PL 0xE3 // Define reuse TX payload register command

//#define NOP 0xFF // Define No Operation, might be used to read status register

//********************************************************************************************************************//

// SPI(nRF24L01) registers(addresses)

#define CONFIG 0x00 // 'Config' register address

#define EN_AA 0x01 // 'Enable Auto Acknowledgment' register address

#define EN_RXADDR 0x02 // 'Enabled RX addresses' register address

#define SETUP_AW0x03 // 'Setup address width' register address

#define SETUP_RETR 0x04 // 'Setup Auto. Retrans' register address

#define RF_CH 0x05 // 'RF channel' register address

#define RF_SETUP0x06 // 'RF setup' register address

#define STATUS 0x07 // 'Status' register address

#define OBSERVE_TX 0x08 // 'Observe TX' register address

#define CD 0x09 // 'Carrier Detect' register address

#define RX_ADDR_P0 0x0A // 'RX address pipe0' register address

#define RX_ADDR_P1 0x0B // 'RX address pipe1' register address

#define RX_ADDR_P2 0x0C // 'RX address pipe2' register address

#define RX_ADDR_P3 0x0D // 'RX address pipe3' register address

#define RX_ADDR_P4 0x0E // 'RX address pipe4' register address

#define RX_ADDR_P5 0x0F // 'RX address pipe5' register address

#define TX_ADDR 0x10 // 'TX address' register address

#define RX_PW_P00x11 // 'RX payload width, pipe0' register address

#define RX_PW_P10x12 // 'RX payload width, pipe1' register address

#define RX_PW_P20x13 // 'RX payload width, pipe2' register address

#define RX_PW_P30x14 // 'RX payload width, pipe3' register address

#define RX_PW_P40x15 // 'RX payload width, pipe4' register address

#define RX_PW_P50x16 // 'RX payload width, pipe5' register address

#define FIFO_STATUS 0x17 // 'FIFO Status Register' register address

/*********************************************************************************************/

/*********************************************************************************************/

/*********************************************************************************************/

/*********************************************************************************************/

/*********************************************************************/

/* CE(PD4) CSN(PD5) SCK(PB7) MOSI(PB5) MISO(PB6) IRQ(PD2) */

/*********************************************************************/

#define TX_ADR_WIDTH5

#define TX_PLOAD_WIDTH 32 //缓冲区大小

#define CE_0 do {PORTD&=0xEF} while(0)

#define CE_1 do {PORTD|=0x10} while(0)//PD4

#define CSN_0 do {PORTD&=0XDF} while(0)

#define CSN_1 do {PORTD|=0X20} while(0)//PD5

unsigned char TX_ADDRESS[TX_ADR_WIDTH]={0x00,0x00,0x90,0x34,0xA7}// Define a static TX address

unsigned char rx_buf[TX_PLOAD_WIDTH]//RX缓冲区

unsigned char tx_buf[TX_PLOAD_WIDTH]//TX缓冲区

volatile unsigned char flag,date,sta

void spi_init()

{

DDRB|=0XB0//SCK、SS and MOSI

DDRB&=~_BV(PB6)//MISO

SPCR = (1 <<SPE)|(1 <<MSTR)|(1 <<SPR0)

SPSR = 0

}

unsigned char send_spi(unsigned char date)

{

SPSR &= ~(1 <<SPIF)

SPDR=date

while((SPSR&0X80)==0X00)

return SPDR

}

void interr_0()

{

DDRD&=~_BV(PD2)

MCUCR=0X02

SREG|=0X80

GICR=0X40

}

void init_sys()

{

DDRD|=0x30

CE_0

CSN_0

}

/**************************************************

Function: SPI_RW_Reg()

Description:

Writes value 'value' to register 'reg'

**************************************************/

unsigned char SPI_RW_Reg(BYTE reg, BYTE value)

{

unsigned char a

CSN_0

a=send_spi(reg)

send_spi(value)// ..and write value to it..

CSN_1

return(a) // return nRF24L01 status byte

}

/**************************************************/

/**************************************************/

BYTE SPI_Read(BYTE reg)

{

BYTE reg_val

CSN_0//CSN IS LOW

send_spi(reg) // Select register to read from..

reg_val=send_spi(0) // ..then read registervalue

CSN_1

return(reg_val) // return register value

}

/**************************************************

Function: SPI_Read_Buf()

Description:

Reads 'bytes' #of bytes from register 'reg'

Typically used to read RX payload, Rx/Tx address

**************************************************/

unsigned char SPI_Read_Buf(BYTE reg, BYTE *pBuf, BYTE bytes)

{

unsigned char status,byte_ctr

CSN_0//CSN IS LOW

status=send_spi(reg)// Select register to write to and read status byte

for(byte_ctr=0byte_ctr<bytesbyte_ctr++)

pBuf[byte_ctr] = send_spi(0) // Perform SPI_RW to read byte from nRF24L01

CSN_1

return(status)

}

/**************************************************/

/**************************************************

Function: SPI_Write_Buf()

Description:

Writes contents of buffer '*pBuf' to nRF24L01

Typically used to write TX payload, Rx/Tx address

**************************************************/

unsigned char SPI_Write_Buf(BYTE reg, BYTE *pBuf, BYTE bytes)

{

unsigned char status,byte_ctr

CSN_0//CSN IS LOW

status=send_spi(reg) // Select register to write to and read status byte

for(byte_ctr=0byte_ctr<bytesbyte_ctr++) // then write all byte in buffer(*pBuf)

send_spi(*pBuf++)

CSN_1

return(status)

}

/**************************************************/

void init_24l01()

{

SPI_RW_Reg(WRITE_REG + EN_AA, 0x01) // Enable Auto.Ack:Pipe0

SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01) // Enable Pipe0

SPI_RW_Reg(WRITE_REG + RF_CH, 40) // Select RF channel 40

SPI_RW_Reg(WRITE_REG + RX_PW_P0, TX_PLOAD_WIDTH)// Select same RX payload width as TX Payload width

SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x0f) // TX_PWR:0dBm, Datarate:2Mbps, LNA:HCURR

}

/**************************************************

Function: RX_Mode()

Description:

This function initializes one nRF24L01 device to

RX Mode, set RX address, writes RX payload width,

select RF channel, datarate &LNA HCURR.

After init, CE is toggled high, which means that

this device is now ready to receive a datapacket.

**************************************************/

void RX_Mode(void)

{

CE_0

SPI_Write_Buf((WRITE_REG + RX_ADDR_P0), TX_ADDRESS, TX_ADR_WIDTH)//Use the same address on the RX device as the TX device

SPI_RW_Reg(WRITE_REG + CONFIG, 0x0f)// Set PWR_UP bit, enable CRC(2 bytes) &Prim:RX. RX_DR enabled..

CE_1// Set CE

}

/**************************************************

Function: TX_Mode()

Description:

This function initializes one nRF24L01 device to

TX mode, set TX address, set RX address for auto.ack,

fill TX payload, select RF channel, datarate &TX pwr.

PWR_UP is set, CRC(2 bytes) is enabled, &PRIM:TX.

ToDo: One high pulse(>10us) on CE will now send this

packet and expext an acknowledgment from the RX device.

**************************************************/

void TX_Mode(void)

{

CE_0

SPI_Write_Buf((WRITE_REG + TX_ADDR), TX_ADDRESS, TX_ADR_WIDTH) // Writes TX_Address to nRF24L01

SPI_Write_Buf((WRITE_REG + RX_ADDR_P0), TX_ADDRESS, TX_ADR_WIDTH)// RX_Addr0 same as TX_Adr for Auto.Ack

SPI_Write_Buf(WR_TX_PLOAD, tx_buf, TX_PLOAD_WIDTH)// Writes data to TX payload

SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e)// Set PWR_UP bit, enable CRC(2 bytes) &Prim:TX. MAX_RT &TX_DS enabled..

_delay_ms(5)

CE_1

}

/**************************************************/

/* 中断函数 */

/**************************************************/

ISR(INT0_vect)

{

flag=1

sta=SPI_Read(STATUS)// read register STATUS's value

SPI_RW_Reg(WRITE_REG+STATUS,sta)// clear RX_DR or TX_DS or MAX_RT interrupt flag

if(sta&RX_DR)// if receive data ready (RX_DR) interrupt

{

SPI_Read_Buf(RD_RX_PLOAD,rx_buf,TX_PLOAD_WIDTH)// read receive payload from RX_FIFO buffer

}

if(sta&MAX_RT)

{

SPI_RW_Reg(FLUSH_TX,0x00)

}

if(sta&TX_DS)

{

}

RX_Mode()

}

/********************************************************************

* 文件名 : ATmega32A_NRF24L01

* 描述: 发送端

*创建人 :[email protected]

* 日期 : 2010/3/10

* 版本号 : V1.0

* 备注: 时钟频率8.0MHz

***********************************************************************/

#define F_CPU 8000000UL //8M晶振

#include <avr/io.h>

#include <avr/interrupt.h>

#include <util/delay.h>

#include "2401.h"

#define uchar unsigned char

#define uint unsigned int

/**************************************************/

int main()

{

unsigned char i

init_sys()

spi_init()

interr_0()

init_24l01()

RX_Mode()

PORTA|=0X02

DDRA&=0XFD//PA1输入

while(1)

{

if( (PINA&0x02)==0 )//PA1低电平

{

for(i=1i<4i++)

{

tx_buf[0]=i

TX_Mode()

DDRA|=_BV(PA0)

PORTA|=_BV(PA0)

_delay_ms(500)

}

}

}

}

/********************************************************************

* 文件名 : ATmega32A_NRF24L01

* 描述: 接收端

* 创建人 :[email protected]

* 日期 : 2010/3/10

* 版本号 : V1.0

* 备注: 时钟频率8.0MHz

***********************************************************************/

#define F_CPU 8000000UL

#include<avr/io.h>

#include<avr/interrupt.h>

#include<util/delay.h>

#include "2401.h"

#include"5110.h"

#define uchar unsigned char

#define uint unsigned int

/**************************************************/

volatile unsigned char i

void main()

{

DDRA|=0xF1

DDRB|=0x04

LCD_init() //初始化LCD模块

LCD_clear()//清屏幕

init_sys()

spi_init()

interr_0()

init_24l01()

RX_Mode()

backled1

while(1)

{

if(flag==1)

{

i=rx_buf[0]

LCD_PutString12x16(16,16,Put_variable(i) )

if(rx_buf[0]==3)

{

PORTA|=0X01

DDRA|=0X01

}

else

PORTA&=~_BV(PA0)

flag=0

}

}

}

/**************************************************/


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11481922.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-16
下一篇 2023-05-16

发表评论

登录后才能评论

评论列表(0条)

保存