太多了,我的QQ:39400877
%|
%| SCRIPT: simMLE
%|
%| PURPOSE: Simulate a relative location system by generating
%|random measurements and maximizing the likelihood fcn.
%|After many trials, show the results vs. the Cramer-Rao Bound.
%|
%| AUTHOR: Neal Patwari
%| http://www.engin.umich.edu/~npatwari/
%|
%| REFERENCE: Relative Location Estimation in Wireless Sensor Networks
%| (N. Patwari, A. O. Hero, M. Perkins, N. S. Correal, R. J. O'Dea),
%| IEEE Trans. Signal Processing, vol. 51, no. 8, Aug. 2003, pp. 2137-2148.
%|
tic
% Use globals to allow minimization functions access to network info,
% debugging info.
global refDevices blindDevices totalDevices linearRefLocs dhat funcEvals dfuncEvals
% Basic simulation parameters
roomSize= [1,1] % Room size, meters
gridSize= 5 % How many sensors per side
refDevices = 4 % How many references (must be same length as actualRefLocs)
trials = 20 % How many indep trials to run
measMethod = 'R'% Use 'R' for RSS, 'T' for TOA
totalDevices= gridSize^2
blindDevices= totalDevices - refDevices
blindCoords = 2*blindDevices
actualRefLocs = [0,00,11,11,0]
linearRefLocs = [actualRefLocs(:,1)', actualRefLocs(:,2)']
% Optimization parameters
ftol = 0.00001
if measMethod == 'R',
func = 'calcError' % Use for RSS
dfunc = 'calcDError' % Use for RSS
else
func = 'calcErrorTOA' % Use for TOA
dfunc = 'calcDErrorTOA' % Use for TOA
end
%| 1. Set up the blindfolded device locations
delta= 1/(gridSize-1)
coords = 0:delta:1
xMatrix = ones(gridSize,1)*coords
yMatrix = xMatrix'
xBlind = [xMatrix(2:gridSize-1), ...
xMatrix(gridSize+1:totalDevices-gridSize), ...
xMatrix(totalDevices-gridSize+2:totalDevices-1)]
yBlind = [yMatrix(2:gridSize-1), ...
yMatrix(gridSize+1:totalDevices-gridSize), ...
yMatrix(totalDevices-gridSize+2:totalDevices-1)]
actualBlindLocs = [xBlind', yBlind']
actualAllLocs = [actualRefLocsactualBlindLocs]
xActual = actualAllLocs(:,1)'
yActual = actualAllLocs(:,2)'
actualDist = L2_distance(actualAllLocs', actualAllLocs',0)
%| 2. Define the channel model
if measMethod == 'R'
sigmaOverN = 1.7
% If C==1, then this simulation runs the _true_ MLE.
% If C==exp( 0.5* (log(10)/10 *sigmaOverN)^2), then this runs a
% bias-corrected (pseudo-) MLE.
% C = exp( 0.5* (log(10)/10 *sigmaOverN)^2)
C = 1
else
sigma_d = 0.2 % Use for TOA
end
for trial = 1:trials,
if measMethod == 'R'
%| 3.0 Generate a random set of RSS-based distance measurements. When RSS
%| is expressed in dB, errors are Gaussian. Here, dhat is an interim
%| variable which has units of distance, and represents an estimate for
%| the range. It is correctly randomly generated as follows:
dhat = actualDist.*10.^(sigmaOverN/10 .*symrandn(totalDevices))./C
else
%| 3.1 Generate a set of TOA measurements, which are Gaussian around the
%| true value with variance sigma_d.
dhat = actualDist + sigma_d .* symrandn(totalDevices)
end
%| 4. Make an initial guess of the coordinates.
blindLocs0 = [xBlind, yBlind]% Use the true coordinates (unrealistic but best case)
%| 5. Find optimum locations of neurfons (fixed and relative)
funcEvals = 0 dfuncEvals = 0
[coordsMLE, iter, errorMin] = frprmn(blindLocs0, ftol, func, dfunc, 0)
disp(sprintf('%d: Function / Deriv. evals: %d / %d.', trial, funcEvals, dfuncEvals))
%| 6. Save the resulting estimated coords
coordEsts(trial, 1:blindCoords) = coordsMLE
end % for trial
estMean = mean(coordEsts)
estCov = cov(coordEsts)
estVars = diag(estCov)
estStds = sqrt(estVars)
locVars = estVars(1:blindDevices) + estVars((blindDevices+1):(2*blindDevices))
locStd = sqrt(locVars)
toc % show time of execution
% Plot the location estimates for sensors, one at a time.
if 0,
figure
for i=1:blindDevices,
clf
plot(coordEsts(:,i), coordEsts(:,blindDevices+i),'.', ...
estMean(i), estMean(blindDevices+i), 'ro')
hold on
set(gca,'xlim',[-0.2 1.2])
set(gca,'ylim',[-0.2 1.2])
set(gca,'FontSize',20)
set(gca,'DataAspectRatio',[1 1 1])
xlabel('X Position (m)')
ylabel('Y Position (m)')
set(gca,'xTick',0:0.25:1)
set(gca,'yTick',0:0.25:1)
grid
pause
end
end
% Calculate and plot CRB vs. estimator performance.
figureclf
if measMethod == 'R'
[locstdCRB, coordCRB] = calcLocalizationCRB('R', [xBlind, actualRefLocs(:,1)'], ...
[yBlind, actualRefLocs(:,2)'], blindDevices, totalDevices, sigmaOverN)
else
[locstdCRB, coordCRB] = calcLocalizationCRB('T', [xBlind, actualRefLocs(:,1)'], ...
[yBlind, actualRefLocs(:,2)'], blindDevices, totalDevices, sigma_d)
end
for i=1:blindDevices,
hold on
R = cov(coordEsts(:,i), coordEsts(:,blindDevices+i))
drawOval(estMean(i), estMean(blindDevices+i), R, 'k-','v', 8, 0, 1)
R_CRB = coordCRB([i, i+blindDevices],[i, i+blindDevices])
drawOval(xBlind(i), yBlind(i), R_CRB, 'r--','.',20, 0, 1)
end
set(gca,'xlim',[-0.2 1.2])
set(gca,'ylim',[-0.2 1.2])
set(gca,'FontSize',18)
set(gca,'DataAspectRatio',[1 1 1])
xlabel('X Position (m)')
ylabel('Y Position (m)')
set(gca,'xTick',0:0.25:1)
set(gca,'yTick',0:0.25:1)
grid
% Use for comparison
RMS_est_Std = sqrt(mean(locStd.^2))
RMS_crb_Std = sqrt(mean(locstdCRB.^2))
蓝牙定位基于RSSI(Received Signal Strength Indication,信号场强指示)定位原理。搭建方式很简单,借助蓝牙网关或者是蓝牙Beacon就可以实现。
蓝牙室内定位方案的实现必然是建立在蓝牙室内定位产品的基础上,主要定位硬件包括蓝牙网关、蓝牙Beacon、手环、手表等蓝牙标签以及智能手机、无线局域网及后端数据服务器等。根据定位端的不同,蓝牙定位方式分为网络侧定位和终端侧定位。
终端侧定位以蓝牙Beacon(VG01/VG02)主导,主要依托于蓝牙技术;网络侧定位以蓝牙网关(TD05/TD05A)为主导,集成了WiFi和蓝牙BLE两种无线通信方式;
蓝牙室内定位方案工作原理:
终端侧定位是蓝牙Beacon室内定位设备作为蓝牙信标不断的向周围广播信号和数据包。当终端设备进入Beacon设备信号覆盖的范围,测出其在不同信标(不同ID号的Beacon硬件设备)下的RSSI值,然后再通过手机内置的定位算法测算出具体位置(一般至少需要3个信标点的RSSI);
网络侧定位是蓝牙网关(TD03/TD05)里面的蓝牙模块收集蓝牙终端的蓝牙设备信息,包括Mac地址、RSSI等信息,通过UART串口发给蓝牙网关里面的WiFi模块,WiFi模块把信息传输到指定的UDP服务器,并能接收服务器返回的信息。UDP服务器接收到来自某个IP的蓝牙网关数据后,通过数据解析和计算,得到蓝牙信标的位置信息。希望能够帮助到您!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)