可以用笔记本电脑的gpu编程吗

可以用笔记本电脑的gpu编程吗,第1张

不可以。

GPU没有可编程性。

现在GPU用于通用计算方面,都要用一个平台将代码转换为GPU能识别的矢量流,这也就是Nvidia的CUDA平台最主要的功能。所以,GPU编程简单来说就是用高级语言编写运算语句,再放进CUDA,扔给GPU计算。

编程是编定程序的中文简称,就是让计算机代码解决某个问题,对某个计算体系规定一定的运算方式,使计算体系按照该计算方式运行,并最终得到相应结果的过程。为了使计算机能够理解人的意图,人类就必须将需解决的问题的思路、方法和手段通过计算机能够理解的形式告诉计算机,使得计算机能够根据人的指令一步一步去工作,完成某种特定的任务。这种人和计算体系之间交流的过程就是编程。

U越来越强大,GPU为显示图像做了优化之外,在计算上已经超越了通用的CPU。如此强大的芯片如果只是作为显卡就太浪费了,因此NVidia推出CUDA,让显卡可以用于图像计算以外的目的,也就是超于游戏,使得GPU能够发挥其强大的运算能力。

一年前NVIDIA发布CUDA,这是一种专门针对GPU的C语言开发工具。与以往采用图形API接口指挥GPU完成各种运算处理功能不同,CUDA的出现使研究人员和工程师可以在熟悉的C语言环境下,自由地输入代码调用GPU的并行处理架构。这使得原先需要花费数天数周才能出结果的运算大大缩短到数几小时,甚至几分钟之内。

CUDA是用于GPU计算的开发环境,它是一个全新的软硬件架构,可以将GPU视为一个并行数据计算的设备,对所进行的计算进行分配和管理。在CUDA的架构中,这些计算不再像过去所谓的GPGPU架构那样必须将计算映射到图形API(OpenGL和Direct 3D)中,因此对于开发者来说,CUDA的开发门槛大大降低了。CUDA的GPU编程语言基于标准的C语言,因此任何有C语言基础的用户都很容易地开发CUDA的应用程序。

那么,如何使得CPU与GPU之间很好的进行程序之间的衔接呢?以GPGPU的概念来看,显卡仍然需要以传统的DirectX和OpenGL这样的API来实现,对于编程人员来说,这样的方法非常繁琐,而CUDA正是以GPGPU这个概念衍生而来的新的应用程序接口,不过CUDA则提供了一个更加简便的方案——C语言。我们回顾一下CUDA的发展历史。

在Mac电脑上面编译GPU版本TensorFlow的方法

基本使用

使用 TensorFlow, 你必须明白 TensorFlow:

使用图 (graph) 来表示计算任务.

在被称之为 会话 (Session) 的上下文 (context) 中执行图.

使用 tensor 表示数据.

通过 变量 (Variable) 维护状态.

使用 feed 和 fetch 可以为任意的 *** 作(arbitrary operation) 赋值或者从其中获取数据.


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11732787.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-18
下一篇 2023-05-18

发表评论

登录后才能评论

评论列表(0条)

保存