模糊c均值算法matlab程序

模糊c均值算法matlab程序,第1张

function [center, U, obj_fcn] = FCMClust(data, cluster_n, options)

% FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类

%

% 用法:

% 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options)

% 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster)

%

% 输入:

% data---- nxm矩阵,表示n个样本,每个样本具有m的维特征值

% N_cluster ---- 标量,表示聚合中心数目,即类别数

% options ---- 4x1矩阵,其中

% options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0)

% options(2): 最大迭代次数 (缺省值: 100)

% options(3): 隶属度最小变化量,迭代终止条件 (缺省值: 1e-5)

% options(4): 每次迭代是否输出信息标志(缺省值: 1)

% 输出:

% center ---- 聚类中心

% U ---- 隶属度矩阵

% obj_fcn ---- 目标函数值

% Example:

% data = rand(100,2)

% [center,U,obj_fcn] = FCMClust(data,2)

% plot(data(:,1), data(:,2),'o')

% hold on

% maxU = max(U)

% index1 = find(U(1,:) == maxU)

% index2 = find(U(2,:) == maxU)

% line(data(index1,1),data(index1,2),'marker','*','color','g')

% line(data(index2,1),data(index2,2),'marker','*','color','r')

% plot([center([1 2],1)],[center([1 2],2)],'*','color','k')

% hold off

if nargin ~= 2 &nargin ~= 3,%判断输入参数个数只能是2个或3个

error('Too many or too few input arguments!')

end

data_n = size(data, 1)% 求出data的第一维(rows)数,即样本个数

in_n = size(data, 2) % 求出data的第二维(columns)数,即特征值长度

% 默认 *** 作参数

default_options = [2% 隶属度矩阵U的指数

100 % 最大迭代次数

1e-5 % 隶属度最小变化量,迭代终止条件

1]% 每次迭代是否输出信息标志

if nargin == 2,

options = default_options

else %分析有options做参数时候的情况

% 如果输入参数个数是二那么就调用默认的option

if length(options) <4, %如果用户给的opition数少于4个那么其他用默认值

tmp = default_options

tmp(1:length(options)) = options

options = tmp

end

% 返回options中是数的值为0(如NaN),不是数时为1

nan_index = find(isnan(options)==1)

%将denfault_options中对应位置的参数赋值给options中不是数的位置.

options(nan_index) = default_options(nan_index)

if options(1) <= 1, %如果模糊矩阵的指数小于等于1

error('The exponent should be greater than 1!')

end

end

%将options 中的分量分别赋值给四个变量

expo = options(1) % 隶属度矩阵U的指数

max_iter = options(2) % 最大迭代次数

min_impro = options(3) % 隶属度最小变化量,迭代终止条件

display = options(4) % 每次迭代是否输出信息标志

obj_fcn = zeros(max_iter, 1)% 初始化输出参数obj_fcn

U = initfcm(cluster_n, data_n)% 初始化模糊分配矩阵,使U满足列上相加为1,

% Main loop 主要循环

for i = 1:max_iter,

%在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值

[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo)

if display,

fprintf('FCM:Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i))

end

% 终止条件判别

if i >1,

if abs(obj_fcn(i) - obj_fcn(i-1)) <min_impro,

break

end,

end

end

iter_n = i% 实际迭代次数

obj_fcn(iter_n+1:max_iter) = []

% 子函数

function U = initfcm(cluster_n, data_n)

% 初始化fcm的隶属度函数矩阵

% 输入:

% cluster_n ---- 聚类中心个数

% data_n ---- 样本点数

% 输出:

% U ---- 初始化的隶属度矩阵

U = rand(cluster_n, data_n)

col_sum = sum(U)

U = U./col_sum(ones(cluster_n, 1), :)

% 子函数

function [U_new, center, obj_fcn] = stepfcm(data, U, cluster_n, expo)

% 模糊C均值聚类时迭代的一步

% 输入:

% data---- nxm矩阵,表示n个样本,每个样本具有m的维特征值

% U ---- 隶属度矩阵

% cluster_n ---- 标量,表示聚合中心数目,即类别数

% expo---- 隶属度矩阵U的指数

% 输出:

% U_new ---- 迭代计算出的新的隶属度矩阵

% center ---- 迭代计算出的新的聚类中心

% obj_fcn ---- 目标函数值

mf = U.^expo % 隶属度矩阵进行指数运算结果

center = mf*data./((ones(size(data, 2), 1)*sum(mf'))')% 新聚类中心(5.4)式

dist = distfcm(center, data) % 计算距离矩阵

obj_fcn = sum(sum((dist.^2).*mf)) % 计算目标函数值 (5.1)式

tmp = dist.^(-2/(expo-1))

U_new = tmp./(ones(cluster_n, 1)*sum(tmp)) % 计算新的隶属度矩阵 (5.3)式

% 子函数

function out = distfcm(center, data)

% 计算样本点距离聚类中心的距离

% 输入:

% center ---- 聚类中心

% data ---- 样本点

% 输出:

% out---- 距离

out = zeros(size(center, 1), size(data, 1))

for k = 1:size(center, 1), % 对每一个聚类中心

% 每一次循环求得所有样本点到一个聚类中心的距离

out(k, :) = sqrt(sum(((data-ones(size(data,1),1)*center(k,:)).^2)',1))

end

给你一个全MATLAB仿真的程序,没用到SIMULINK

close all

clear all

a=newfis('fuzzf')

f1=1

a=addvar(a,'input','e',[-3*f1,3*f1])

a=addmf(a,'input',1,'NB','zmf',[-3*f1,-1*f1])

a=addmf(a,'input',1,'NM','trimf',[-3*f1,-2*f1,0])

a=addmf(a,'input',1,'NS','trimf',[-3*f1,-1*f1,1*f1])

a=addmf(a,'input',1,'Z','trimf',[-2*f1,0,2*f1])

a=addmf(a,'input',1,'PS','trimf',[-1*f1,1*f1,3*f1])

a=addmf(a,'input',1,'PM','trimf',[0,2*f1,3*f1])

a=addmf(a,'input',1,'PB','smf',[1*f1,3*f1])

f2=1

a=addvar(a,'input','ec',[-3*f2,3*f2])

a=addmf(a,'input',2,'NB','zmf',[-3*f2,-1*f2])

a=addmf(a,'input',2,'NM','trimf',[-3*f2,-2*f2,0])

a=addmf(a,'input',2,'NS','trimf',[-3*f2,-1*f2,1*f2])

a=addmf(a,'input',2,'Z','trimf',[-2*f2,0,2*f2])

a=addmf(a,'input',2,'PS','trimf',[-1*f2,1*f2,3*f2])

a=addmf(a,'input',2,'PM','trimf',[0,2*f2,3*f2])

a=addmf(a,'input',2,'PB','smf',[1*f2,3*f2])

f3=1.5

a=addvar(a,'output','u',[-3*f3,3*f3])

a=addmf(a,'output',1,'NB','zmf',[-3*f3,-1*f3])

a=addmf(a,'output',1,'NM','trimf',[-3*f3,-2*f3,0])

a=addmf(a,'output',1,'NS','trimf',[-3*f3,-1*f3,1*f3])

a=addmf(a,'output',1,'Z','trimf',[-2*f3,0,2*f3])

a=addmf(a,'output',1,'PS','trimf',[-1*f3,1*f3,3*f3])

a=addmf(a,'output',1,'PM','trimf',[0,2*f3,3*f3])

a=addmf(a,'output',1,'PB','smf',[1*f3,3*f3])

rulelist=[1 1 1 1 1

1 2 1 1 1

1 3 2 1 1

1 4 2 1 1

1 5 3 1 1

1 6 3 1 1

1 7 4 1 1

2 1 1 1 1

2 2 2 1 1

2 3 2 1 1

2 4 3 1 1

2 5 3 1 1

2 6 4 1 1

2 7 5 1 1

3 1 2 1 1

3 2 2 1 1

3 3 3 1 1

3 4 3 1 1

3 5 4 1 1

3 6 5 1 1

3 7 5 1 1

4 1 2 1 1

4 2 3 1 1

4 3 3 1 1

4 4 4 1 1

4 5 5 1 1

4 6 5 1 1

4 7 6 1 1

5 1 3 1 1

5 2 3 1 1

5 3 4 1 1

5 4 5 1 1

5 5 5 1 1

5 6 6 1 1

5 7 6 1 1

6 1 3 1 1

6 2 4 1 1

6 3 5 1 1

6 4 5 1 1

6 5 6 1 1

6 6 6 1 1

6 7 7 1 1

7 1 4 1 1

7 2 5 1 1

7 3 5 1 1

7 4 6 1 1

7 5 6 1 1

7 6 7 1 1

7 7 7 1 1]

a=addrule(a,rulelist)

a1=setfis(a,'DefuzzMethod','mom')%Defuzzy

writefis(a1,'fuzzf')

a2=readfis('fuzzf')

Ulist=zeros(7,7)

for i=1:7

for j=1:7

e(i)=-4+i

ec(j)=-4+j

Ulist(i,j)=evalfis([e(i),ec(j)],a2)

end

end

figure(1)

plotfis(a2)

figure(2)

plotmf(a,'input',1)

figure(3)

plotmf(a,'input',2)

figure(4)

plotmf(a,'output',1)

这里简单说明一下:首先是编写2个输入,1个输出的隶属度函数;接下来的是模糊规则,一共49条;然后用解模糊函数得出控制量U,这里输出的U就直接是精确量了,解模糊用到得规则是取隶属度最大的那个数即MOM算法。

显示的三个图形窗口分别是:模糊控制器内部原理图,以及2个输入,1个输出的隶属度函数图。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11813933.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-18
下一篇 2023-05-18

发表评论

登录后才能评论

评论列表(0条)

保存