% FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类
%
% 用法:
% 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options)
% 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster)
%
% 输入:
% data---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
% N_cluster ---- 标量,表示聚合中心数目,即类别数
% options ---- 4x1矩阵,其中
% options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0)
% options(2): 最大迭代次数 (缺省值: 100)
% options(3): 隶属度最小变化量,迭代终止条件 (缺省值: 1e-5)
% options(4): 每次迭代是否输出信息标志(缺省值: 1)
% 输出:
% center ---- 聚类中心
% U ---- 隶属度矩阵
% obj_fcn ---- 目标函数值
% Example:
% data = rand(100,2)
% [center,U,obj_fcn] = FCMClust(data,2)
% plot(data(:,1), data(:,2),'o')
% hold on
% maxU = max(U)
% index1 = find(U(1,:) == maxU)
% index2 = find(U(2,:) == maxU)
% line(data(index1,1),data(index1,2),'marker','*','color','g')
% line(data(index2,1),data(index2,2),'marker','*','color','r')
% plot([center([1 2],1)],[center([1 2],2)],'*','color','k')
% hold off
if nargin ~= 2 &nargin ~= 3,%判断输入参数个数只能是2个或3个
error('Too many or too few input arguments!')
end
data_n = size(data, 1)% 求出data的第一维(rows)数,即样本个数
in_n = size(data, 2) % 求出data的第二维(columns)数,即特征值长度
% 默认 *** 作参数
default_options = [2% 隶属度矩阵U的指数
100 % 最大迭代次数
1e-5 % 隶属度最小变化量,迭代终止条件
1]% 每次迭代是否输出信息标志
if nargin == 2,
options = default_options
else %分析有options做参数时候的情况
% 如果输入参数个数是二那么就调用默认的option
if length(options) <4, %如果用户给的opition数少于4个那么其他用默认值
tmp = default_options
tmp(1:length(options)) = options
options = tmp
end
% 返回options中是数的值为0(如NaN),不是数时为1
nan_index = find(isnan(options)==1)
%将denfault_options中对应位置的参数赋值给options中不是数的位置.
options(nan_index) = default_options(nan_index)
if options(1) <= 1, %如果模糊矩阵的指数小于等于1
error('The exponent should be greater than 1!')
end
end
%将options 中的分量分别赋值给四个变量
expo = options(1) % 隶属度矩阵U的指数
max_iter = options(2) % 最大迭代次数
min_impro = options(3) % 隶属度最小变化量,迭代终止条件
display = options(4) % 每次迭代是否输出信息标志
obj_fcn = zeros(max_iter, 1)% 初始化输出参数obj_fcn
U = initfcm(cluster_n, data_n)% 初始化模糊分配矩阵,使U满足列上相加为1,
% Main loop 主要循环
for i = 1:max_iter,
%在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值
[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo)
if display,
fprintf('FCM:Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i))
end
% 终止条件判别
if i >1,
if abs(obj_fcn(i) - obj_fcn(i-1)) <min_impro,
break
end,
end
end
iter_n = i% 实际迭代次数
obj_fcn(iter_n+1:max_iter) = []
% 子函数
function U = initfcm(cluster_n, data_n)
% 初始化fcm的隶属度函数矩阵
% 输入:
% cluster_n ---- 聚类中心个数
% data_n ---- 样本点数
% 输出:
% U ---- 初始化的隶属度矩阵
U = rand(cluster_n, data_n)
col_sum = sum(U)
U = U./col_sum(ones(cluster_n, 1), :)
% 子函数
function [U_new, center, obj_fcn] = stepfcm(data, U, cluster_n, expo)
% 模糊C均值聚类时迭代的一步
% 输入:
% data---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
% U ---- 隶属度矩阵
% cluster_n ---- 标量,表示聚合中心数目,即类别数
% expo---- 隶属度矩阵U的指数
% 输出:
% U_new ---- 迭代计算出的新的隶属度矩阵
% center ---- 迭代计算出的新的聚类中心
% obj_fcn ---- 目标函数值
mf = U.^expo % 隶属度矩阵进行指数运算结果
center = mf*data./((ones(size(data, 2), 1)*sum(mf'))')% 新聚类中心(5.4)式
dist = distfcm(center, data) % 计算距离矩阵
obj_fcn = sum(sum((dist.^2).*mf)) % 计算目标函数值 (5.1)式
tmp = dist.^(-2/(expo-1))
U_new = tmp./(ones(cluster_n, 1)*sum(tmp)) % 计算新的隶属度矩阵 (5.3)式
% 子函数
function out = distfcm(center, data)
% 计算样本点距离聚类中心的距离
% 输入:
% center ---- 聚类中心
% data ---- 样本点
% 输出:
% out---- 距离
out = zeros(size(center, 1), size(data, 1))
for k = 1:size(center, 1), % 对每一个聚类中心
% 每一次循环求得所有样本点到一个聚类中心的距离
out(k, :) = sqrt(sum(((data-ones(size(data,1),1)*center(k,:)).^2)',1))
end
给你一个全MATLAB仿真的程序,没用到SIMULINKclose all
clear all
a=newfis('fuzzf')
f1=1
a=addvar(a,'input','e',[-3*f1,3*f1])
a=addmf(a,'input',1,'NB','zmf',[-3*f1,-1*f1])
a=addmf(a,'input',1,'NM','trimf',[-3*f1,-2*f1,0])
a=addmf(a,'input',1,'NS','trimf',[-3*f1,-1*f1,1*f1])
a=addmf(a,'input',1,'Z','trimf',[-2*f1,0,2*f1])
a=addmf(a,'input',1,'PS','trimf',[-1*f1,1*f1,3*f1])
a=addmf(a,'input',1,'PM','trimf',[0,2*f1,3*f1])
a=addmf(a,'input',1,'PB','smf',[1*f1,3*f1])
f2=1
a=addvar(a,'input','ec',[-3*f2,3*f2])
a=addmf(a,'input',2,'NB','zmf',[-3*f2,-1*f2])
a=addmf(a,'input',2,'NM','trimf',[-3*f2,-2*f2,0])
a=addmf(a,'input',2,'NS','trimf',[-3*f2,-1*f2,1*f2])
a=addmf(a,'input',2,'Z','trimf',[-2*f2,0,2*f2])
a=addmf(a,'input',2,'PS','trimf',[-1*f2,1*f2,3*f2])
a=addmf(a,'input',2,'PM','trimf',[0,2*f2,3*f2])
a=addmf(a,'input',2,'PB','smf',[1*f2,3*f2])
f3=1.5
a=addvar(a,'output','u',[-3*f3,3*f3])
a=addmf(a,'output',1,'NB','zmf',[-3*f3,-1*f3])
a=addmf(a,'output',1,'NM','trimf',[-3*f3,-2*f3,0])
a=addmf(a,'output',1,'NS','trimf',[-3*f3,-1*f3,1*f3])
a=addmf(a,'output',1,'Z','trimf',[-2*f3,0,2*f3])
a=addmf(a,'output',1,'PS','trimf',[-1*f3,1*f3,3*f3])
a=addmf(a,'output',1,'PM','trimf',[0,2*f3,3*f3])
a=addmf(a,'output',1,'PB','smf',[1*f3,3*f3])
rulelist=[1 1 1 1 1
1 2 1 1 1
1 3 2 1 1
1 4 2 1 1
1 5 3 1 1
1 6 3 1 1
1 7 4 1 1
2 1 1 1 1
2 2 2 1 1
2 3 2 1 1
2 4 3 1 1
2 5 3 1 1
2 6 4 1 1
2 7 5 1 1
3 1 2 1 1
3 2 2 1 1
3 3 3 1 1
3 4 3 1 1
3 5 4 1 1
3 6 5 1 1
3 7 5 1 1
4 1 2 1 1
4 2 3 1 1
4 3 3 1 1
4 4 4 1 1
4 5 5 1 1
4 6 5 1 1
4 7 6 1 1
5 1 3 1 1
5 2 3 1 1
5 3 4 1 1
5 4 5 1 1
5 5 5 1 1
5 6 6 1 1
5 7 6 1 1
6 1 3 1 1
6 2 4 1 1
6 3 5 1 1
6 4 5 1 1
6 5 6 1 1
6 6 6 1 1
6 7 7 1 1
7 1 4 1 1
7 2 5 1 1
7 3 5 1 1
7 4 6 1 1
7 5 6 1 1
7 6 7 1 1
7 7 7 1 1]
a=addrule(a,rulelist)
a1=setfis(a,'DefuzzMethod','mom')%Defuzzy
writefis(a1,'fuzzf')
a2=readfis('fuzzf')
Ulist=zeros(7,7)
for i=1:7
for j=1:7
e(i)=-4+i
ec(j)=-4+j
Ulist(i,j)=evalfis([e(i),ec(j)],a2)
end
end
figure(1)
plotfis(a2)
figure(2)
plotmf(a,'input',1)
figure(3)
plotmf(a,'input',2)
figure(4)
plotmf(a,'output',1)
这里简单说明一下:首先是编写2个输入,1个输出的隶属度函数;接下来的是模糊规则,一共49条;然后用解模糊函数得出控制量U,这里输出的U就直接是精确量了,解模糊用到得规则是取隶属度最大的那个数即MOM算法。
显示的三个图形窗口分别是:模糊控制器内部原理图,以及2个输入,1个输出的隶属度函数图。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)