哪里有c++加密的源码,最好是可以用 g++编译的

哪里有c++加密的源码,最好是可以用 g++编译的,第1张

/* des: duplicate the NBS Data Encryption Standard in software.

* usage: des <file>

* prompts for the password

* If the filename ends in ".n" it will be decrypted with the key

* otherwise it will be encrypted.

*

* Permutation algorithm:

* The permutation is defined by its effect on each of the 16 nibbles

* of the 64-bit input. For each nibble we give an 8-byte bit array

* that has the bits in the input nibble distributed correctly. The

* complete permutation involves ORing the 16 sets of 8 bytes designated

* by the 16 input nibbles. Uses 16*16*8 = 2K bytes of storage for

* each 64-bit permutation. 32-bit permutations (P) and expansion (E)

* are done similarly, but using bytes instead of nibbles.

* Should be able to use long ints, adding the masks, at a

* later pass. Tradeoff: can speed 64-bit perms up at cost of slowing

* down expansion or contraction operations by using 8K tables here and

* decreasing the size of the other tables.

* The compressions are pre-computed in 12-bit chunks, combining 2 of the

* 6->4 bit compressions.

* The key schedule is also precomputed.

* Compile with VALIDATE defined to run the NBS validation suite.

*

* Jim Gillogly, May 1977

* Modified 8/84 by Jim Gillogly and Lauren Weinstein to compile with

* post-1977 C compilers and systems

*

* This program is now officially in the public domain, and is available for

* any non-profit use as long as the authorship line is retained.

*/

/*#define VALIDATE */ /* define to check the NBS validation suite */

/*#define DEBUG */

/*#define LATTICE */ /* define for Lattice C on IBM PC */

#include <stdio.h>

#ifndef LATTICE

#include <sgtty.h>

#include <signal.h>

#include <sys/types.h> /* for local timer */

#include <sys/timeb.h> /* ditto */

struct sgttyb ttybuf /* for gtty/stty */

int bye() /* for caught interrupts */

#endif

char iperm[16][16][8],fperm[16][16][8]/* inital and final permutations*/

char s[4][4096] /* S1 thru S8 precomputed */

char p32[4][256][4] /* for permuting 32-bit f output*/

char kn[16][6] /* key selections */

endes(inblock,outblock) /* encrypt 64-bit inblock */

char *inblock, *outblock

{ char iters[17][8] /* workspace for each iteration */

char swap[8] /* place to interchange L and R */

register int i

register char *s, *t

permute(inblock,iperm,iters[0])/* apply initial permutation */

for (i=0i<16i++) /* 16 churning operations */

iter(i,iters[i],iters[i+1])

/* don't re-copy to save space */

s = swapt = &iters[16][4]/* interchange left */

*s++ = *t++*s++ = *t++*s++ = *t++*s++ = *t++

t = &iters[16][0] /* and right */

*s++ = *t++*s++ = *t++*s++ = *t++*s++ = *t++

permute(swap,fperm,outblock) /* apply final permutation */

}

dedes(inblock,outblock) /* decrypt 64-bit inblock */

char *inblock,*outblock

{ char iters[17][8] /* workspace for each iteration */

char swap[8] /* place to interchange L and R */

register int i

register char *s, *t

permute(inblock,iperm,iters[0])/* apply initial permutation */

for (i=0i<16i++) /* 16 churning operations */

iter(15-i,iters[i],iters[i+1])

/* reverse order from encrypting*/

s = swapt = &iters[16][4]/* interchange left */

*s++ = *t++*s++ = *t++*s++ = *t++*s++ = *t++

t = &iters[16][0] /* and right */

*s++ = *t++*s++ = *t++*s++ = *t++*s++ = *t++

permute(swap,fperm,outblock) /* apply final permutation */

}

permute(inblock,perm,outblock) /* permute inblock with perm */

char *inblock, *outblock /* result into outblock,64 bits */

char perm[16][16][8] /* 2K bytes defining perm. */

{ register int i,j

register char *ib, *ob /* ptr to input or output block */

register char *p, *q

for (i=0, ob = outblocki<8i++)

*ob++ = 0 /* clear output block */

ib = inblock

for (j = 0j <16j += 2, ib++) /* for each input nibble */

{ ob = outblock

p = perm[j][(*ib >>4) &017]

q = perm[j + 1][*ib &017]

for (i = 0i <8i++) /* and each output byte */

*ob++ |= *p++ | *q++ /* OR the masks together*/

}

}

char ip[]/* initial permutation P */

= { 58, 50, 42, 34, 26, 18, 10, 2,

60, 52, 44, 36, 28, 20, 12, 4,

62, 54, 46, 38, 30, 22, 14, 6,

64, 56, 48, 40, 32, 24, 16, 8,

57, 49, 41, 33, 25, 17, 9, 1,

59, 51, 43, 35, 27, 19, 11, 3,

61, 53, 45, 37, 29, 21, 13, 5,

63, 55, 47, 39, 31, 23, 15, 7 }

char fp[]/* final permutation F */

= { 40, 8, 48, 16, 56, 24, 64, 32,

39, 7, 47, 15, 55, 23, 63, 31,

38, 6, 46, 14, 54, 22, 62, 30,

37, 5, 45, 13, 53, 21, 61, 29,

36, 4, 44, 12, 52, 20, 60, 28,

35, 3, 43, 11, 51, 19, 59, 27,

34, 2, 42, 10, 50, 18, 58, 26,

33, 1, 41, 9, 49, 17, 57, 25 }

/* expansion operation matrix */ /* rwo: unused */

/* char ei[] = { 32, 1, 2, 3, 4, 5,

4, 5, 6, 7, 8, 9,

8, 9, 10, 11, 12, 13,

12, 13, 14, 15, 16, 17,

16, 17, 18, 19, 20, 21,

20, 21, 22, 23, 24, 25,

24, 25, 26, 27, 28, 29,

28, 29, 30, 31, 32, 1 }*/

char pc1[]/* permuted choice table (key) */

= { 57, 49, 41, 33, 25, 17, 9,

1, 58, 50, 42, 34, 26, 18,

10, 2, 59, 51, 43, 35, 27,

19, 11, 3, 60, 52, 44, 36,

63, 55, 47, 39, 31, 23, 15,

7, 62, 54, 46, 38, 30, 22,

14, 6, 61, 53, 45, 37, 29,

21, 13, 5, 28, 20, 12, 4 }

char totrot[] /* number left rotations of pc1 */

= { 1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28 }

char pc1m[56]/* place to modify pc1 into */

char pcr[56] /* place to rotate pc1 into */

char pc2[]/* permuted choice key (table) */

= { 14, 17, 11, 24, 1, 5,

3, 28, 15, 6, 21, 10,

23, 19, 12, 4, 26, 8,

16, 7, 27, 20, 13, 2,

41, 52, 31, 37, 47, 55,

30, 40, 51, 45, 33, 48,

44, 49, 39, 56, 34, 53,

46, 42, 50, 36, 29, 32 }

char si[8][64] /* 48->32 bit compression tables*/

= { /* S[1]*/

14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,

0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,

4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,

15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,

/* S[2]*/

15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,

3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,

0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,

13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,

/* S[3]*/

10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,

13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,

13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,

1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,

/* S[4]*/

7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,

13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,

10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,

3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,

/* S[5]*/

2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,

14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,

4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,

11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,

/* S[6]*/

12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,

10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,

9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,

4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,

/* S[7]*/

4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,

13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,

1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,

6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,

/* S[8]*/

13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,

1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,

7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,

2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }

char p32i[]/* 32-bit permutation function */

= { 16, 7, 20, 21,

29, 12, 28, 17,

1, 15, 23, 26,

5, 18, 31, 10,

2, 8, 24, 14,

32, 27, 3, 9,

19, 13, 30, 6,

22, 11, 4, 25 }

desinit(key)/* initialize all des arrays */

char *key

{

#ifdef DEBUG

/*deb*/ printf("Initial perm init.\n")

#endif

perminit(iperm,ip) /* initial permutation */

#ifdef DEBUG

/*deb*/ printf("Final perm init.\n")

#endif

perminit(fperm,fp) /* final permutation */

#ifdef DEBUG

/*deb*/ printf("Key sched init.\n")

#endif

kinit(key) /* key schedule */

#ifdef DEBUG

/*deb*/ printf("Compression init.\n")

#endif

sinit() /* compression functions */

#ifdef DEBUG

/*deb*/ printf("32-bit perm init.\n")

#endif

p32init() /* 32-bit permutation in f */

#ifdef DEBUG

/*deb*/ printf("End init.\n")

#endif

}

int bytebit[] /* bit 0 is left-most in byte */

= { 0200,0100,040,020,010,04,02,01 }

int nibblebit[] = { 010,04,02,01 }

sinit() /* initialize s1-s8 arrays */

{ register int i,j

for (i=0i<4i++) /* each 12-bit position */

for (j=0j<4096j++) /* each possible 12-bit value */

s[i][j]=(getcomp(i*2,j>>6)<<4) |

(017&getcomp(i*2+1,j&077))

/* store 2 compressions per char*/

}

getcomp(k,v)/* 1 compression value for sinit*/

int k,v

{ register int i,j /* correspond to i and j in FIPS*/

i=((v&040)>>4)|(v&1) /* first and last bits make row */

j=(v&037)>>1 /* middle 4 bits are column */

return (int) si[k][(i<<4)+j] /* result is ith row, jth col */

}

kinit(key)/* initialize key schedule array*/

char *key /* 64 bits (will use only 56) */

{ register int i,j,l

int m

for (j=0j<56j++) /* convert pc1 to bits of key */

{ l=pc1[j]-1 /* integer bit location */

m = l &07 /* find bit */

pc1m[j]=(key[l>>3] &/* find which key byte l is in */

bytebit[m]) /* and which bit of that byte */

? 1 : 0/* and store 1-bit result */

}

for (i=0i<16i++) /* for each key sched section */

for (j=0j<6j++) /* and each byte of the kn */

kn[i][j]=0/* clear it for accumulation */

for (i=0i<16i++) /* key chunk for each iteration */

{ for (j=0j<56j++) /* rotate pc1 the right amount */

pcr[j] = pc1m[(l=j+totrot[i])<(j<28? 28 : 56) ? l: l-28]

/* rotate left and right halves independently */

for (j=0j<48j++) /* select bits individually */

if (pcr[pc2[j]-1]) /* check bit that goes to kn[j] */

{ l= j &07

kn[i][j>>3] |= bytebit[l]

} /* mask it in if it's there */

}

}

p32init()/* initialize 32-bit permutation*/

{ register int l, j, k

int i,m

for (i=0i<4i++) /* each input byte position */

for (j=0j<256j++) /* all possible input bytes */

for (k=0k<4k++) /* each byte of the mask */

p32[i][j][k]=0/* clear permutation array */

for (i=0i<4i++) /* each input byte position */

for (j=0j<256j++) /* each possible input byte */

for (k=0k<32k++) /* each output bit position */

{ l=p32i[k]-1/* invert this bit (0-31) */

if ((l>>3)!=i) /* does it come from input posn?*/

continue/* if not, bit k is 0 */

if (!(j&bytebit[l&07]))

continue/* any such bit in input? */

m = k &07 /* which bit is it? */

p32[i][j][k>>3] |= bytebit[m]

}

}

perminit(perm,p) /* initialize a perm array */

char perm[16][16][8] /* 64-bit, either init or final */

char p[64]

{ register int l, j, k

int i,m

for (i=0i<16i++) /* each input nibble position */

for (j=0j<16j++) /* all possible input nibbles */

for (k=0k<8k++) /* each byte of the mask */

perm[i][j][k]=0/* clear permutation array */

for (i=0i<16i++) /* each input nibble position */

for (j = 0j <16j++)/* each possible input nibble */

for (k = 0k <64k++)/* each output bit position */

{ l = p[k] - 1/* where does this bit come from*/

if ((l >>2) != i) /* does it come from input posn?*/

continue/* if not, bit k is 0 */

if (!(j &nibblebit[l &3]))

continue/* any such bit in input? */

m = k &07/* which bit is this in the byte*/

perm[i][j][k>>3] |= bytebit[m]

}

}

iter(num,inblock,outblock) /* 1 churning operation */

int num /* i.e. the num-th one */

char *inblock, *outblock /* 64 bits each */

{ char fret[4] /* return from f(R[i-1],key) */

register char *ib, *ob, *fb

/* register int i*/ /* rwo: unused */

ob = outblockib = &inblock[4]

f(ib, num, fret) /* the primary transformation */

*ob++ = *ib++ /* L[i] = R[i-1] */

*ob++ = *ib++

*ob++ = *ib++

*ob++ = *ib++

ib = inblockfb = fret/* R[i]=L[i] XOR f(R[i-1],key) */

*ob++ = *ib++ ^ *fb++

*ob++ = *ib++ ^ *fb++

*ob++ = *ib++ ^ *fb++

*ob++ = *ib++ ^ *fb++

}

f(right,num,fret) /* critical cryptographic trans */

char *right, *fret /* 32 bits each */

int num /* index number of this iter */

{ register char *kb, *rb, *bb/* ptr to key selection &c */

char bigright[6] /* right expanded to 48 bits */

char result[6] /* expand(R) XOR keyselect[num] */

char preout[4] /* result of 32-bit permutation */

kb = kn[num] /* fast version of iteration */

bb = bigright

rb = result

expand(right,bb) /* expand to 48 bits */

*rb++ = *bb++ ^ *kb++ /* expanded R XOR chunk of key */

*rb++ = *bb++ ^ *kb++

*rb++ = *bb++ ^ *kb++

*rb++ = *bb++ ^ *kb++

*rb++ = *bb++ ^ *kb++

*rb++ = *bb++ ^ *kb++

contract(result,preout)/* use S fns to get 32 bits */

perm32(preout,fret) /* and do final 32-bit perm */

}

perm32(inblock,outblock) /* 32-bit permutation at end */

char *inblock,*outblock /* of the f crypto function */

{ register int j

/* register int i*/ /* rwo: unused */

register char *ib, *ob

register char *q

ob = outblock /* clear output block */

*ob++ = 0*ob++ = 0*ob++ = 0*ob++ = 0

ib=inblock /* ptr to 1st byte of input */

for (j=0j<4j++, ib++) /* for each input byte */

{ q = p32[j][*ib &0377]

ob = outblock /* and each output byte */

*ob++ |= *q++ /* OR the 16 masks together */

*ob++ |= *q++

*ob++ |= *q++

*ob++ |= *q++

}

}

expand(right,bigright) /* 32 to 48 bits with E oper */

char *right,*bigright /* right is 32, bigright 48 */

{

register char *bb, *r, r0, r1, r2, r3

bb = bigright

r = rightr0 = *r++r1 = *r++r2 = *r++r3 = *r++

*bb++ = ((r3 &0001) <<7) | /* 32*/

((r0 &0370) >>1) | /* 1 2 3 4 5 */

((r0 &0030) >>3)/* 4 5*/

*bb++ = ((r0 &0007) <<5) | /* 6 7 8 */

((r1 &0200) >>3) | /* 9*/

((r0 &0001) <<3) | /* 8*/

((r1 &0340) >>5)/* 9 10 11 */

*bb++ = ((r1 &0030) <<3) | /* 12 13 */

((r1 &0037) <<1) | /* 12 13 14 15 16 */

((r2 &0200) >>7)/* 17*/

*bb++ = ((r1 &0001) <<7) | /* 16*/

((r2 &0370) >>1) | /* 17 18 19 20 21 */

((r2 &0030) >>3)/* 20 21 */

*bb++ = ((r2 &0007) <<5) | /* 22 23 24 */

((r3 &0200) >>3) | /* 25*/

((r2 &0001) <<3) | /* 24*/

((r3 &0340) >>5)/* 25 26 27 */

*bb++ = ((r3 &0030) <<3) | /* 28 29 */

((r3 &0037) <<1) | /* 28 29 30 31 32 */

((r0 &0200) >>7)/* 1*/

}

contract(in48,out32) /* contract f from 48 to 32 bits*/

char *in48,*out32 /* using 12-bit pieces into bytes */

{ register char *c

register char *i

register int i0, i1, i2, i3, i4, i5

i = in48

i0 = *i++i1 = *i++i2 = *i++i3 = *i++i4 = *i++i5 = *i++

c = out32 /* do output a byte at a time */

*c++ = s[0][07777 &((i0 <<4) | ((i1 >>4) &017 ))]

*c++ = s[1][07777 &((i1 <<8) | ( i2 &0377 ))]

*c++ = s[2][07777 &((i3 <<4) | ((i4 >>4) &017 ))]

*c++ = s[3][07777 &((i4 <<8) | ( i5 &0377 ))]

}

/* End of DES algorithm (except for calling desinit below) */

#ifndef VALIDATE

char *inname, *outname

FILE *infile, *outfile

int encrypting

char buf[512]

char keyx[9], keyy[9]

char *malloc(), *strcpy(), *strcat()

main(argc, argv)

int argcchar *argv[]

{ register char *u

char *filename

if (argc <2) /* filenames given? */

{ fprintf(stderr, "Usage: des file ...\n")

exit(1)

}

for (++argv--argc++argv)

{ inname = *argv

outname = filename = malloc((unsigned) strlen(inname) + 3)

strcpy(filename, inname)

u = &filename[strlen(filename) - 2]/* check last 2 chars */

encrypting = (strcmp(".n", u) != 0)

if (!encrypting) *u = 0/* strip .n from output filename */

else strcat(filename, ".n") /* or add .n to output file */

if ((infile = fopen(inname, "rb")) == NULL)

{ fprintf(stderr,"Can't read %s.\n", inname)

exit(1)

}

if ((outfile = fopen(outname, "rb")) != NULL)

{ fprintf(stderr, "%s would be overwritten.\n",outname)

exit(1)

}

if ((outfile = fopen(outname, "wb")) == NULL)

{ fprintf(stderr,"Can't write %s.\n", outname)

exit(1)

}

key_get("Type password for ")

for ()

{ strcpy(keyx, keyy)

key_get("Verify password for ")

if (strcmp(keyx, keyy) == 0) break

}

desinit(keyx) /* set up tables for DES */

if (pfile() == 0) unlink(inname)

else fprintf(stderr,

"%s: I/O Error -- File unchanged\n", inname)

fclose(outfile)

fclose(infile)

}

exit(0)

}

key_get(mes) /* get file key */

char *mes

{ register int i, j

char linebuf[256]

int count

for (i=0i<14i++) keyy[i]=0

#ifdef LATTICE

#else

gtty(0, &ttybuf)

ttybuf.sg_flags &= ~ECHO /* turn off echoing */

signal(SIGINT, bye)/* catch ints */

stty(0, &ttybuf)

#endif

printf("%s%s: ", mes, inname)

fflush(stdout)

count = read(0, linebuf, 256) /* read input line */

printf("\n")

#ifndef LATTICE

ttybuf.sg_flags |= ECHO /* restore echo */

stty(0, &ttybuf)

#endif

linebuf[count] = 0 /* null terminate */

if (linebuf[count-1] == '\n') /* ignore any terminating newline */

{ linebuf[count-1] = 0

count--

}

if (count >8) count = 8/* only use 8 chars */

for (i = j = 0count--)

keyy[i++] = linebuf[j++]

}

pfile() /* process the file */

{ register int m, nsave

register char *b

int j

while (m = fread(buf, 1, 512, infile))

{

if ((nsave = m) <0) /* read error */

return(-1)

for (b=bufm>0/* encrypt/decrypt 1 buffer-full*/

m -= 8, b += 8) /* 8-byte blocks */

{ if (encrypting)

{ if (m<8) /* don't have a full 64 bits */

{ for (j=0j<8-mj++)

b[m+j]=garbage()/* fill block with trash */

nsave += 8-m /* complete the block */

}

else j=0 /* number of nulls in last block*/

endes(b,b)/* don't need diff input, output*/

}

else /* decrypting */

{ if (m <8) deout(b, 1)/* last byte in file: count */

else

{ dedes(b, b)/* decrypt and output block */

deout(b, 0)

}

}

}

if (encrypting) if (fwrite(buf, 1, nsave, outfile) != nsave)

return(-1)

}

/* have now encrypted/decrypted the whole file

* need to append the byte count for the last block if encrypting.

*/

if (encrypting) fputc(8 - j, outfile) /* how many good bytes? */

return(0)

}

int outcount = 0 /* see when caught up with delay*/

deout(block,flag) /* 1-block delay on output */

char *block,flag /* 64-bit block, last block flag*/

{ static char last[8] /* previous input block */

register int i

/* register char *c,*j*/ /* rwo: unused */

if (flag) /* output the last few bytes */

{

fwrite(last, 1, block[0] &0377, outfile)

return

}

if (outcount++)

lattice的FPGA是基于EEPROM的,在你设计的时候程序不会因为你掉电而消失

而altera的和xilinx的都是基与SDRAM的,程序会因为你掉电而消失,当然你可以外置EEPROM或者FLASH。下载入编译工具生成的POF文件,同样可以达到掉电不消失的效果。至于开发环境,lattice的ispLEVER跟Altera的quartus以及xilinx的ISE都大同小异。因为FPGA的设计流程在那里,所以工具没太大的不同。

还有问题的话可以补充给我。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11822763.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-19
下一篇 2023-05-19

发表评论

登录后才能评论

评论列表(0条)

保存