1. PySpark Shell - PySpark Shell是一个交互式的命令行环境,可以使用它来编写和运行Spark代码。它提供了很好的系统变量和通过命令行编辑功能来查询和检查Spark代码的调试信息。
2. Databricks Cluster - Databricks是一种云端Spark计算服务,它提供了数据科学家和工程师一个非常简单的硬件和软件基础架构来处理大数据。它提供了一个交互式的环境,可以查看和编辑Spark代码。
3. Zeppelin Notebook - Zeppelin Notebook是一个强大的分布式数据分析和可视化Web应用程序。它支持Spark、Hadoop、Flink、Cassandra等开源大数据技术,并提供了丰富的可视化和交互组件来帮助用户分析和展现数据。
4. IntelliJ IDEA - IntelliJ IDEA是一个流行的Java和Scala编程的开发环境。它可以与Spark结合,提供了一些代码编辑和调试功能,例如:语法高亮,代码补全,调试等功能。
5. Jupyter Notebook - Jupyter Notebook是一个支持多种编程语言的Web应用程序,它可以在一个网页轻松快捷的编辑和运行代码。用户可以使用Jupyter来解释和运行Spark代码,还可以通过输出和可视化来优化他们的数据分析。
Spark 的运行模式有 Local(也称单节点模式),Standalone(集群模式),Spark on Yarn(运行在Yarn上),Mesos以及K8s等常用模式,本文介绍前三种模式。
Spark-shell 参数
Spark-shell 是以一种交互式命令行方式将Spark应用程序跑在指定模式上,也可以通过Spark-submit提交指定运用程序,Spark-shell 底层调用的是Spark-submit,二者的使用参数一致的,通过- -help 查看参数:
sparkconf的传入有三种方式:
1.通过在spark应用程序开发的时候用set()方法进行指定
2.通过在spark应用程序提交的时候用过以上参数指定,一般使用此种方式,因为使用较为灵活
3.通过配置spark-default.conf,spark-env.sh文件进行指定,此种方式较shell方式级别低
Local模式
Local 模式是最简单的一种Spark运行方式,它采用单节点多线程(cpu)方式运行,local模式是一种OOTB(开箱即用)的方式,只需要在spark-env.sh导出JAVA_HOME,无需其他任何配置即可使用,因而常用于开发和学习
方式:./spark-shell - -master local[n] ,n代表线程数
Standalone模式
Spark on Yarn
on Yarn的俩种模式
客户端的Driver将应用提交给Yarn后,Yarn会先后启动ApplicationMaster和excutor,另外ApplicationMaster和executor都装在在container里运行,container默认的内存是1g,ApplicationMaster分配的内存是driver-memory,executor分配的内存是executor-memory.同时,因为Driver在客户端,所以程序的运行结果可以在客户端显示,Driver以进程名为SparkSubmit的形式存在。
Cluster 模式
1.由client向ResourceManager提交请求,并上传Jar到HDFS上
这期间包括四个步骤:
a).连接到RM
b).从RM ASM(applicationsManager)中获得metric,queue和resource等信息。
c).upload app jar and spark-assembly jar
d).设置运行环境和container上下文
2.ResourceManager向NodeManager申请资源,创建Spark ApplicationMaster(每个SparkContext都有一个ApplicationManager)
3.NodeManager启动Spark App Master,并向ResourceManager ASM注册
4.Spark ApplicationMaster从HDFS中找到jar文件,启动DAGScheduler和YARN Cluster Scheduler
5.ResourceManager向ResourceManager ASM注册申请container资源(INFO YarnClientImpl: Submitted application)
6.ResourceManager通知NodeManager分配Container,这是可以收到来自ASM关于container的报告。(每个container的对应一个executor)
7.Spark ApplicationMaster直接和container(executor)进行交互,完成这个分布式任务。
进入spark安装目录下的conf文件夹
[atguigu@hadoop102 module] mv slaves.template slaves
[atguigu@hadoop102 conf] vim slaves
hadoop102
hadoop103
hadoop104
4)修改spark-env.sh文件,添加如下配置:
[atguigu@hadoop102 conf]$ vim spark-env.sh
SPARK_MASTER_HOST=hadoop102
SPARK_MASTER_PORT=7077
5)分发spark包
[atguigu@hadoop102 module] sbin/start-all.sh
注意:如果遇到 “JAVA_HOME not set” 异常,可以在sbin目录下的spark-config.sh 文件中加入如下配置:
export JAVA_HOME=XXXX
官方求PI案例
spark-submit
--class org.apache.spark.examples.SparkPi
--master spark://server-2:7077
--executor-memory 1G
--total-executor-cores 2
/home/xxx/software/spark-2.4.4-bin-hadoop2.7/examples/jars/spark-examples_2.11-2.4.4.jar
100
spark-shell
--master spark://server-2:7077
--executor-memory 1g
--total-executor-cores 2
spark-shell --master spark://server-2:7077 --executor-memory 1g --total-executor-cores 2
参数:--master spark://server-2:7077 指定要连接的集群的master
Spark客户端直接连接Yarn,不需要额外构建Spark集群。有yarn-client和yarn-cluster两种模式,主要区别在于:Driver程序的运行节点。
yarn-client:Driver程序运行在客户端,适用于交互、调试,希望立即看到app的输出
yarn-cluster:Driver程序运行在由RM(ResourceManager)启动的AP(APPMaster)适用于生产环境。
安装使用
1)修改hadoop配置文件yarn-site.xml,添加如下内容:
2)修改spark-env.sh,添加如下配置:
[atguigu@hadoop102 conf]$ vi spark-env.sh
YARN_CONF_DIR=/opt/module/hadoop-2.7.2/etc/hadoop
3)分发配置文件
[atguigu@hadoop102 conf] xsync spark-env.sh
4)执行一个程序
spark-submit
--class org.apache.spark.examples.SparkPi
--master yarn
--deploy-mode client
/home/xxx/software/spark-2.4.4-bin-hadoop2.7/examples/jars/spark-examples_2.11-2.4.4.jar
100
注意:在提交任务之前需启动HDFS以及YARN集群。
日志查看
修改配置文件spark-defaults.conf
添加如下内容:
spark.yarn.historyServer.address=server-2:18080
spark.history.ui.port=18080
2)重启spark历史服务
[atguigu@hadoop102 spark] sbin/start-history-server.sh
starting org.apache.spark.deploy.history.HistoryServer, logging to /opt/module/spark/logs/spark-atguigu-org.apache.spark.deploy.history.HistoryServer-1-hadoop102.out
3)提交任务到Yarn执行
spark-submit
--class org.apache.spark.examples.SparkPi
--master yarn
--deploy-mode client
/home/xxx/software/spark-2.4.4-bin-hadoop2.7/examples/jars/spark-examples_2.11-2.4.4.jar
100
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)