NAT有两大类,基本NAT和NAPT。
静态NAT:一个公网IP对应一个内部IP,一对一转换
动态NAT:N个公网IP对应M个内部IP,不固定的一对一转换关系
现在基本使用这种,又分为对称和锥型NAT。
锥型NAT ,有完全锥型、受限制锥型、端口受限制锥型三种:
对称NAT :
把所有来自相同内部IP地址和端口号,到特定目的IP地址和端口号的请求映射到相同的外部IP地址和端口。如果同一主机使用不同的源地址和端口对,发送的目的地址不同,则使用不同的映射。只有收到了一个IP包的外部主机才能够向该内部主机发送回一个UDP包。对称的NAT不保证所有会话中的(私有地址,私有端口)和(公开IP,公开端口)之间绑定的一致性。相反,它为每个新的会话分配一个新的端口号。
对称NAT是一个请求对应一个端口,非对称NAT是多个请求对应一个端口(象锥形,所以叫Cone NAT)。
连接服务器为A,NAT检测服务器为B。
第一步:当一个接收客户端(Endpoint-Receiver ,简称 EP-R)需要接收文件信息时,在其向连接服务器发送文件请求的同时紧接着向检测服务器发送NAT检测请求。此处再次强调是“紧接着”,因为对于对称型NAT来说,这个 *** 作可以直接算出其地址分配的增量(⊿p)。
第二步:当EP-R收到A或B的反馈信息时发现其外部地址与自身地址不同时就可以确定自己在NAT后面;否则,就是公网IP。
第三步:由服务器A向B发送其获得的EP-R的外部映射地址(IPa/Porta),服务器B获得后进行比较,如果端口不同,则说明这是对称型NAT,同时可以直接计算出其分配增量:
⊿p=Portb-Porta
第四步:如果端口号相同,则由B向EP-R的Porta发送连接请求,如果EP-R有响应,则说明EP-R没有IP和Port的限制,属于全ConeNAT类型。
第五步:如果没有响应,则由服务器B使用其新端口b’向EP-R的Portb端口发送连接请求,如果有响应,则说明EP-R只对IP限制,属于限制性ConeNAT类型;否则就是对IP和port都限制,属于端口限制性ConeNAT类型。
通过上述五步基本可以全部检测出EP-R是否在公网,还是在某种NAT后面。
这也是一项可选配置任务,可根据需要为NAT 地址映射表配置老化时间,以控制用户对NAT 配置的使用,确保内、外网的通信安全。
配置NAT 地址映射表项老化时间的方法也很简单,只须在系统视图下使用firewall-nat session { dns | ftp | ftp-data | http | icmp | tcp | tcp-proxy | udp | sip | sip-media | rtsp |rtsp-media }aging-time time-value 命令配置即可。参数 time-value的取值范围为1~65 535的整数秒。如果要配置多个会话表项的超时时间需要分别用本命令配置。
缺省情况下,各协议的老化时间为:DNS(120 s)、ftp(120 s)、ftp-data(120 s)、HTTP(120 s)、icmp(20 s)、tcp(600 s)、tcp-proxy(10 s)、udp(120 s)、sip(1 800 s)、sip-media ( 120 s )、rtsp ( 60 s )、rtsp-media ( 120 s ), 可用undo firewall-natsession { all | dns | ftp | ftp-data | http | icmp | tcp | tcp-proxy | udp | sip | sip-media | rtsp |rtsp-media } aging-time 命令恢复对应会话表项的超时时间为缺省值。
1、 中间服务器保存信息、并能发出建立UDP隧道的命令
2、 网关均要求为Cone NAT类型。Symmetric NAT不适合。
3、 完全圆锥型网关可以无需建立udp隧道,但这种情况非常少,要求双方均为这种类型网关的更少。
4、 假如X1网关为Symmetric NAT, Y1为Address Restricted Cone NAT 或Full Cone NAT型网关,各自建立隧道后,A1可通过X1发送数据报给Y1到B1(因为Y1最多只进行IP级别的甄别),但B2发送给X1的将会被丢弃(因为发送来的数据报中端口与X1上存在会话的端口不一致,虽然IP地址一致),所以同样没有什么意义。
5、 假如双方均为Symmetric NAT的情形,新开了端口,对方可以在不知道的情况下尝试猜解,也可以达到目的,但这种情形成功率很低,且带来额外的系统开支,不是个好的解决办法。
6、 不同网关型设置的差异在于,对内会采用替换IP的方式、使用不同端口不同会话的方式,使用相同端口不同会话的方式;对外会采用什么都不限制、限制IP地址、限制IP地址及端口。
7、 这里还没有考虑同一内网不同用户同时访问同一服务器的情形,如果此时网关采用AddressRestricted Cone NAT 或Full Cone NAT型,有可能导致不同用户客户端可收到别人的数据包,这显然是不合适的。
为什么网上讲到的P2P打洞基本上都是基于UDP协议的打洞?难道TCP不可能打洞?还是TCP打洞难于实现?
假设现在有内网客户端A和内网客户端B,有公网服务端S。
如果A和B想要进行UDP通信,则必须穿透双方的NAT路由。假设为NAT-A和NAT-B。
S也和A B 分别建立了会话,由S发到NAT-A的数据包会被NAT-A直接转发给A,
由S发到NAT-B的数据包会被NAT-B直接转发给B,除了S发出的数据包之外的则会被丢弃。
所以:现在A B 都能分别和S进行全双工通讯了,但是A B之间还不能直接通讯。
并转发给A了(即B现在能访问A了);再由S命令B向A的公网IP发送一个数据包,则
NAT-B能接收来自NAT-A的数据包并转发给B了(即A现在能访问B了)。
以上就是“打洞”的原理。
<pre style="margin: 0pxpadding: 0pxwhite-space: pre-wrapoverflow-wrap: break-word">为了保证A的路由器有与B的session,A要定时与B做心跳包,同样,B也要定时与A做心跳,这样,双方的通信通道都是通的,就可以进行任意的通信了。</pre>
API造成的。
UDP的socket允许多个socket绑定到同一个本地端口,而TCP的socket则不允许。
这是这样一个意思:A B要连接到S,肯定首先A B双方都会在本地创建一个socket,
去连接S上的socket。创建一个socket必然会绑定一个本地端口(就算应用程序里面没写
端口,实际上也是绑定了的,至少java确实如此),假设为8888,这样A和B才分别建立了到
S的通信信道。接下来就需要打洞了,打洞则需要A和B分别发送数据包到对方的公网IP。但是
问题就在这里:因为NAT设备是根据端口号来确定session,如果是UDP的socket,A B可以
分别再创建socket,然后将socket绑定到8888,这样打洞就成功了。但是如果是TCP的
socket,则不能再创建socket并绑定到8888了,这样打洞就无法成功。
**UDP打洞**的过程大致如此:
1、双方都通过UDP与服务器通讯后,网关默认就是做了一个外网IP和端口号 与你内网IP与端口号的映射,这个无需设置的,服务器也不需要知道客户的真正内网IP
2、用户A先通过服务器知道用户B的外网地址与端口
3、用户A向用户B的外网地址与端口发送消息,
4、在这一次发送中,用户B的网关会拒收这条消息,因为它的映射中并没有这条规则。
5、但是用户A的网关就会增加了一条允许规则,允许接收从B发送过来的消息
6、服务器要求用户B发送一个消息到用户A的外网IP与端口号
7、用户B发送一条消息,这时用户A就可以接收到B的消息,而且网关B也增加了允许规则
8、之后,由于网关A与网关B都增加了允许规则,所以A与B都可以向对方的外网IP和端口号发送消息。
TCP打洞 技术:
tcp打洞也需要NAT设备支持才行。
tcp的打洞流程和udp的基本一样,但tcp的api决定了tcp打洞的实现过程和udp不一样。
tcp按cs方式工作,一个端口只能用来connect或listen,所以需要使用端口重用,才能利用本地nat的端口映射关系。(设置SO_REUSEADDR,在支持SO_REUSEPORT的系统上,要设置这两个参数。)
连接过程:(以udp打洞的第2种情况为例(典型情况))
nat后的两个peer,A和B,A和B都bind自己listen的端口,向对方发起连接(connect),即使用相同的端口同时连接和等待连接。因为A和B发出连接的顺序有时间差,假设A的syn包到达B的nat时,B的syn包还没有发出,那么B的nat映射还没有建立,会导致A的连接请求失败(连接失败或无法连接,如果nat返回RST或者icmp差错,api上可能表现为被RST;有些nat不返回信息直接丢弃syn包(反而更好)),(应用程序发现失败时,不能关闭socket,closesocket()可能会导致NAT删除端口映射;隔一段时间(1-2s)后未连接还要继续尝试);但后发B的syn包在到达A的nat时,由于A的nat已经建立的映射关系,B的syn包会通过A的nat,被nat转给A的listen端口,从而进去三次握手,完成tcp连接。
从应用程序角度看,连接成功的过程可能有两种不同表现:(以上述假设过程为例)
1、连接建立成功表现为A的connect返回成功。即A端以TCP的同时打开流程完成连接。
2、A端通过listen的端口完成和B的握手,而connect尝试持续失败,应用程序通过accept获取到连接,最终放弃connect(这时可closesocket(conn_fd))。
多数Linux和Windows的协议栈表现为第2种。
但有一个问题是,建立连接的client端,其connect绑定的端口号就是主机listen的端口号,或许这个peer后续还会有更多的这种socket。虽然理论上说,socket是一个五元组,端口号是一个逻辑数字,传输层能够因为五元组的不同而区分开这些socket,但是是否存在实际上的异常,还有待更多观察。
1、Windows XP SP2 *** 作系统之前的主机,这些主机不能正确处理TCP同时开启,或者TCP套接字不支持SO_REUSEADDR的参数。需要让AB有序的发起连接才可能完成。
上述tcp连接过程,仅对NAT1、2、3有效,对NAT4(对称型)无效。
由于对称型nat通常采用规律的外部端口分配方法,对于nat4的打洞,可以采用端口预测的方式进行尝试。
ALG(应用层网关) :它可以是一个设备或插件,用于支持SIP协议,主要类似与在网关上专门开辟一个通道,用于建立内网与外网的连接,也就是说,这是一种定制的网关。更多只适用于使用他们的应用群体内部之间。
UpnP :它是让网关设备在进行工作时寻找一个全球共享的可路由IP来作为通道,这样避免端口造成的影响。要求设备支持且开启upnp功能,但大部分时候,这些功能处于安全考虑,是被关闭的。即时开启,实际应用效果还没经过测试。
STUN(Simple Traversalof UDP Through Network): 这种方式即是类似于我们上面举例中服务器C的处理方式。也是目前普遍采用的方式。但具体实现要比我们描述的复杂许多,光是做网关Nat类型判断就由许多工作,RFC3489中详细描述了。
TURN(Traveral Using Relay NAT): 该方式是将所有的数据交换都经由服务器来完成,这样NAT将没有障碍,但服务器的负载、丢包、延迟性就是很大的问题。目前很多游戏均采用该方式避开NAT的问题。这种方式不叫p2p。
ICE(Interactive Connectivity Establishment): 是对上述各种技术的综合,但明显带来了复杂性。
课程地址:零声学院 WebRTC入门与提高 https://ke.qq.com/course/435382?tuin=137bb271
技术支持QQ群:782508536
最近介入测试P2P的相关逻辑,因此对NAT穿透原理做了一定程度的了解(当然也没有很深入)。本篇文章也是综合和参考了些网络上和文献里的一些资料(文中没有对引用处进行标记,请见谅)。写本文的目的就是,用自己的语言描述了这个过程,同时也在描述过程中加入了一些自己的理解,形成一篇文章作为要点的记录。对于这一块的知识,自己也有很多盲点,还请各路大神多多指教。
NAT(Network Address Translation,网络地址转换),也叫做网络掩蔽或者IP掩蔽。NAT是一种网络地址翻译技术,主要是将内部的私有IP地址(private IP)转换成可以在公网使用的公网IP(public IP)。
时光回到上个世纪80年代,当时的人们在设计网络地址的时候,觉得再怎么样也不会有超过32bits位长即2的32次幂台终端设备连入互联网,再加上增加ip的长度(即使是从4字节增到6字节)对当时设备的计算、存储、传输成本也是相当巨大的。后来逐渐发现IP地址不够用了,然后就NAT就诞生了!(虽然ipv6也是解决办法,但始终普及不开来,而且未来到底ipv6够不够用仍是未知)。
因此,NAT技术能够兴起的原因还是因为在我们国家公网IP地址太少了,不够用,所以才会采取这种地址转换的策略。可见,NAT的本质就是让一群机器公用同一个IP,这样就暂时解决了IP短缺的问题。
优势其实上面已经刚刚讨论过了,根据定义,比较容易看出,NAT可以同时让多个计算机同时联网,并隐藏其内网IP,因此也增加了内网的网络安全性;此外,NAT对来自外部的数据查看其NAT映射记录,对没有相应记录的数据包进行拒绝,提高了网络安全性。
那么,NAT与此同时也带来一些弊端:首先是,NAT设备会对数据包进行编辑修改,这样就降低了发送数据的效率;此外,各种协议的应用各有不同,有的协议是无法通过NAT的(不能通过NAT的协议还是蛮多的),这就需要通过穿透技术来解决。我们后面会重点讨论穿透技术。
简单的背景了解过后,下面介绍下NAT实现的主要方式,以及NAT都有哪些类型。
1)静态NAT:也就是静态地址转换。是指一个公网IP对应一个私有IP,是一对一的转换,同时注意,这里只进行了IP转换,而没有进行端口的转换。举个栗子:
2)NAPT:端口多路复用技术。与静态NAT的差别是,NAPT不但要转换IP地址,还要进行传输层的端口转换。具体的表现形式就是,对外只有一个公网IP,通过端口来区别不同私有IP主机的数据。再举个栗子。
通过上面NAT实现方式的介绍,我们其实不难看出,现实环境中NAPT的应用显然是更广泛的。因此下面就重点介绍下NAPT的主要类型有哪些。
对于NAPT我们主要分为两大类:锥型NAT和对称型NAT。其中锥型NAT又分:完全锥型,受限锥型和端口受限锥型。概括的说:对称型NAT是一个请求对应一个端口;锥型NAT(非对称NAT)是多个请求(外部发向内部)对应一个端口,只要源IP端口不变,无论发往的目的IP是否相同,在NAT上都映射为同一个端口,形象的看起来就像锥子一样。下面分别介绍这四种类型及其差异。
1)完全锥型NAT(Full Cone NAT,后面简称FC)
特点:IP和端口都不受限。
表现形式:将来自内部同一个IP地址同一个端口号(IP_IN_A : PORT_IN_A)的主机监听/请求,映射到公网IP某个端口(IP_OUT_B : PORT_OUT_B)的监听。任意外部IP地址与端口对其自己公网的IP这个映射后的端口访问(IP_OUT_B : PORT_OUT_B),都将重新定位到内部这个主机(IP_IN_A : PORT_IN_A)。该技术中,基于C/S架构的应用可以在任何一端发起连接。是不是很绕啊。再简单一点的说,就是,只要客户端,由内到外建立一个映射(NatIP:NatPort ->A:P1)之后,其他IP的主机B或端口A:P2都可以使用这个洞给客户端发送数据。见下图()。
2)受限锥型NAT(Restricted Cone NAT)
特点:IP受限,端口不受限。
表现形式:与完全锥形NAT不同的是,在公网映射端口后,并不允许所有IP进行对于该端口的访问,要想通信必需内部主机对某个外部IP主机发起过连接,然后这个外部IP主机就可以与该内部主机通信了,但端口不做限制。举个栗子。当客户端由内到外建立映射(NatIP:NatPort –>A:P1),A机器可以使用他的其他端口(P2)主动连接客户端,但B机器则不被允许。因为IP受限啦,但是端口随便。见下图(绿色是允许通信,红色是禁止通信)。
3)端口受限型NAT(Port Restricted Cone NAT)
特点:IP和端口都受限。
表现形式:该技术与受限锥形NAT相比更为严格。除具有受限锥形NAT特性,对于回复主机的端口也有要求。也就是说:只有当内部主机曾经发送过报文给外部主机(假设其IP地址为A且端口为P1)之后,外部主机才能以公网IP:PORT中的信息作为目标地址和目标端口,向内部主机发送UDP报文,同时,其请求报文的IP必须是A,端口必须为P1(使用IP地址为A,端口为P2,或者IP地址为B,端口为P1都将通信失败)。例子见下图。这一要求进一步强化了对外部报文请求来源的限制,从而较Restrictd Cone更具安全性。
4)对称型NAT(Symmetric NAT)
特点:对每个外部主机或端口的会话都会映射为不同的端口(洞)。
表现形式:只有来自同一内部IP:PORT、且针对同一目标IP:PORT的请求才被NAT转换至同一个公网(外部)IP:PORT,否则的话,NAT将为之分配一个新的外部(公网)IP:PORT。并且,只有曾经收到过内部主机请求的外部主机才能向内部主机发送数据包。内部主机用同一IP与同一端口与外部多IP通信。客户端想和服务器A(IP_A:PORT_A)建立连接,是通过NAT映射为NatIP:NatPortA来进行的。而客户端和服务器B(IP_B:PORT_B)建立连接,是通过NAT映射为NatIP:NatPortB来进行的。即同一个客户端和不同的目标IP:PORT通信,经过NAT映射后的公网IP:PORT是不同的。此时,如果B想要和客户端通信,也只能通过NatIP:NatPortB(也就是紫色的洞洞)来进行,而不能通过NatIP:NatPortA(也就是黄色的洞洞)。
以上,就是NAPT的四种NAT类型。可以看出由类型1)至类型4),NAT的限制是越来越大的。
根据上面的介绍,我们可以了解到,在实际的网络情况中,各个设备所处的网络环境是不同的。那么,如果这些设备想要进行通信,首先判断出设备所处的网络类型就是非常重要的一步。举个例子来说:对于视频会议和VoIP软件,对位于不同NAT内部的主机通信需要靠服务器来转发完成,这样就会增加服务器的负担。为了解决这种问题,要尽量使位于不同NAT内部的主机建立直接通信,其中,最重要的一点就是要判断出NAT的类型,然后才能根据NAT的类型,设计出直接通信方案。不然的话,两个都在NAT的终端怎么通信呢?我们不知道对方的内网IP,即使把消息发到对方的网关,然后呢?网关怎么知道这条消息给谁,而且谁允许网关这么做了?
为了解决这个问题,也就是处于内网的主机之间能够穿越它们之间的NAT建立直接通信,已经提出了许多方法,STUN(Session Traversal Utilities for NAT,NAT会话穿越应用程序)技术就是其中比较重要的一种解决方法,并得到了广泛的应用。在这个部分,我们将重点介绍下STUN技术的原理。(PS:除此之外,还有UPNP技术,ALG应用层网关识别技术,SBC会话边界控制,ICE交互式连接建立,TURN中继NAT穿越技术等等,本文不一一做介绍。)
STUN是一种网络协议,它允许位于NAT(或多重NAT)后的客户端找出自己的公网地址,查出自己位于哪种类型的NAT之后以及NAT为某一个本地端口所绑定的Internet端端口。这些信息被用来在两个同时处于NAT路由器之后的主机之间建立UDP通信。该协议由RFC 5389定义。STUN由三部分组成:STUN客户端、STUN服务器端、NAT路由器。STUN服务端部署在一台有着两个公网IP的服务器上。大概的结构参考下图。STUN客户端通过向服务器端发送不同的消息类型,根据服务器端不同的响应来做出相应的判断,一旦客户端得知了Internet端的UDP端口,通信就可以开始了。
STUN协议定义了三类测试过程来检测NAT类型。
Test1: STUN Client通过端口{IP-C1:Port-C1}向STUN Server{IP-S1:Port-S1}发送一个Binding Request(没有设置任何属性)。STUN Server收到该请求后,通过端口{IP-S1:Port-S1}把它所看到的STUN Client的IP和端口{IP-M1,Port-M1}作为Binding Response的内容回送给STUN Client。 Test1#2:STUN Client通过端口{IP-C1:Port-C1}向STUN Server{IP-S2:Port-S2}发送一个Binding Request(没有设置任何属性)。STUN Server收到该请求后,通过端口{IP-S2:Port-S2}把它所看到的STUN Client的IP和端口{IP-M1#2,Port-M1#2}作为Binding Response的内容回送给STUN Client。
Test2: STUN Client通过端口{IP-C1:Port-C1}向STUN Server{IP-S1:Port-S1}发送一个Binding Request(设置了Change IP和Change Port属性)。STUN Server收到该请求后,通过端口{IP-S2:Port-S2}把它所看到的STUN Client的IP和端口{IP-M2,Port-M2}作为Binding Response的内容回送给STUN Client。
Test3: STUN Client通过端口{IP-C1:Port-C1}向STUN Server{IP-S1:Port-S1}发送一个Binding Request(设置了Change Port属性)。STUN Server收到该请求后,通过端口{IP-S1:Port-S2}把它所看到的STUN Client的IP和端口{IP-M3,Port-M3}作为Binding Response的内容回送给STUN Client。
STUN协议的输出是: 1)公网IP和Port 2)防火墙是否设置 3)客户端是否在NAT之后,及所处的NAT的类型
因此我们进而整理出,通过STUN协议,我们可以检测的类型一共有以下七种:
A:公开的互联网IP。主机拥有公网IP,并且没有防火墙,可自由与外部通信 B:完全锥形NAT。 C:受限制锥形NAT。 D:端口受限制形NAT。 E:对称型UDP防火墙。主机出口处没有NAT设备,但有防火墙,且防火墙规则如下:从主机UDP端口A发出的数据包保持源地址,但只有从之前该主机发出包的目的IP/PORT发出到该主机端口A的包才能通过防火墙。 F:对称型NAT G:防火墙限制UDP通信。
输入和输出准备好后,附上一张维基百科的流程图,就可以描述STUN协议的判断过程了。
STEP1:检测客户端是否有能力进行UDP通信以及客户端是否位于NAT后 -- Test1 客户端建立UDP socket,然后用这个socket向服务器的(IP-1,Port-1)发送数据包要求服务器返回客户端的IP和Port,客户端发送请求后立即开始接受数据包。重复几次。 a)如果每次都超时收不到服务器的响应,则说明客户端无法进行UDP通信,可能是:G防火墙阻止UDP通信 b)如果能收到回应,则把服务器返回的客户端的(IP:PORT)同(Local IP: Local Port)比较: 如果完全相同则客户端不在NAT后,这样的客户端是:A具有公网IP可以直接监听UDP端口接收数据进行通信或者E。 否则客户端在NAT后要做进一步的NAT类型检测(继续)。
STEP2:检测客户端防火墙类型 -- Test2 STUN客户端向STUN服务器发送请求,要求服务器从其他IP和PORT向客户端回复包: a)收不到服务器从其他IP地址的回复,认为包前被前置防火墙阻断,网络类型为E b)收到则认为客户端处在一个开放的网络上,网络类型为A
STEP3:检测客户端NAT是否是FULL CONE NAT -- Test2 客户端建立UDP socket然后用这个socket向服务器的(IP-1,Port-1)发送数据包要求服务器用另一对(IP-2,Port-2)响应客户端的请求往回发一个数据包,客户端发送请求后立即开始接受数据包。 重复这个过程若干次。 a)如果每次都超时,无法接受到服务器的回应,则说明客户端的NAT不是一个Full Cone NAT,具体类型有待下一步检测(继续)。 b)如果能够接受到服务器从(IP-2,Port-2)返回的应答UDP包,则说明客户端是一个Full Cone NAT,这样的客户端能够进行UDP-P2P通信。
STEP4:检测客户端NAT是否是SYMMETRIC NAT -- Test1#2 客户端建立UDP socket然后用这个socket向服务器的(IP-1,Port-1)发送数据包要求服务器返回客户端的IP和Port, 客户端发送请求后立即开始接受数据包。 重复这个过程直到收到回应(一定能够收到,因为第一步保证了这个客户端可以进行UDP通信)。 用同样的方法用一个socket向服务器的(IP-2,Port-2)发送数据包要求服务器返回客户端的IP和Port。 比较上面两个过程从服务器返回的客户端(IP,Port),如果两个过程返回的(IP,Port)有一对不同则说明客户端为Symmetric NAT,这样的客户端无法进行UDP-P2P通信(检测停止)因为对称型NAT,每次连接端口都不一样,所以无法知道对称NAT的客户端,下一次会用什么端口。否则是Restricted Cone NAT,是否为Port Restricted Cone NAT有待检测(继续)。
STEP5:检测客户端NAT是Restricted Cone 还是 Port Restricted Cone -- Test3 客户端建立UDP socket然后用这个socket向服务器的(IP-1,Port-1)发送数据包要求服务器用IP-1和一个不同于Port-1的端口发送一个UDP 数据包响应客户端, 客户端发送请求后立即开始接受数据包。重复这个过程若干次。如果每次都超时,无法接受到服务器的回应,则说明客户端是一个Port Restricted Cone NAT,如果能够收到服务器的响应则说明客户端是一个Restricted Cone NAT。以上两种NAT都可以进行UDP-P2P通信。
通过以上过程,至此,就可以分析和判断出客户端是否处于NAT之后,以及NAT的类型及其公网IP,以及判断客户端是否具备P2P通信的能力了。当然这是自己个人笔记的第一篇,后面,再作一篇笔记《NAT穿透原理浅析(二)》分析下不同NAT类型的穿透打洞策略。
当 host 主机通过 NAT 访问外网的 B 主机时,就会在 NAT 上打个“洞”,所谓的“打洞”就是在 NAT 上建立一个内外网的映射表。
四元组
大多数打洞都是使用的 UDP 协议。之所以会这样,是因为 UDP 是无连接协议,它没有连接状态的判断,也就是说只要你发送数据给它,它就能收到。
IP 限制锥型要比完全锥型 NAT 严格得多,它主要的特点是,host 主机在 NAT 上“打洞”后,NAT 会对穿越洞口的 IP 地址做限制。只有登记的 IP 地址才可以通过,也就是说,只有 host 主机访问过的外网主机才能穿越 NAT。
如果发现发来数据的 IP 地址没有登记,则直接将该数据包丢弃。
5 元组
6 元组
该 6 元组中,不光包括了 host 主机内外网的映射关系,还包括了要访问的主机的 IP 地址及提供服务的应用程序的端口地址。
host 主机访问 B 主机的 p1 端口时,只有 B 主机的 p1 端口发送的消息才能穿越 NAT 与 host 主机通信。而其他主机,甚至 B 主机的 p2 端口都无法穿越 NAT。
与端口限制型 NAT 最大的不同在于,如果 host 主机访问 A 时,它会在 NAT 上重新开一个“洞”,而不会使用之前访问 B 时打开的“洞”。也就是说对称型 NAT 对每个连接都使用不同的端口,甚至更换 IP 地址,而端口限制型 NAT 的多个连接则使用同一个端口,这对称型 NAT 与端口限制型 NAT 最大的不同。
主机向服务器 #1 的某个 IP 和端口发送一个请求,服务器 #1 收到请求后,会通过同样的 IP 和端口返回一个响应消息。
如果能收到包,则判断返回的主机的外网 IP 地址是否与主机自身的 IP 地址一样。如果一样,说明主机就是一台拥有公网地址的主机.
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)