我要用VB编一个能进行高斯投影正反算和邻带换算的程序 哪个高手帮帮忙 万分感谢

我要用VB编一个能进行高斯投影正反算和邻带换算的程序 哪个高手帮帮忙 万分感谢,第1张

我有VB的,自己很多年前写的,一直用,但是正算->反算->正算后,Y坐标与原来的差了0.5-0.7mm,不知道怎么回事,这两年工作忙也没有时间再深究,但是这样的计算精度做控制足够了,如果楼主或是者是哪位同仁见此贴能顺便把这个问题解决了,咱们就一起进步了!代码如下:

'高斯坐标正算

Private Sub DadiZs()

Dim t As Double, Itp As Double, X0 As Double, N As Double, L0 As Double

Dim V As Double, ll As Double, W As Double, M As Double

Lat = Radian(Lat)

Lon = Radian(Lon)

L0 = Radian(Lo)

If Tq = 0 Then

a = 6378245 '54椭球参数

b = 6356863.01877305

ep = 0.006693421622966

ep1 = 0.006738525414683

f = (a - b) / a

c = a ^ 2 / b

d = b ^ 2 / a

X0 = 111134.8611 * (Lat * 180# / Pi) - (32005.7799 * Sin(Lat) + 133.9238 * (Sin(Lat)) ^ 3 + 0.6973 * (Sin(Lat)) ^ 5 + 0.0039 * (Sin(Lat)) ^ 7) * Cos(Lat)

'X0 = 111134.8611 * (Lat * 180# / Pi) - (32005.7798 * Sin(Lat) + 133.9238 * (Sin(Lat)) ^ 3 + 0.6972 * (Sin(Lat)) ^ 5 + 0.0039 * (Sin(Lat)) ^ 7) * Cos(Lat)

Else

a = 6378140 '75椭球参数

b = 6356755.28815753

ep = 0.006694384999588

ep1 = 0.006739501819473

f = (a - b) / a

c = a ^ 2 / b

d = b ^ 2 / a

X0 = 111133.0047 * (Lat * 180 / Pi) - (32009.8575 * Sin(Lat) + 133.9602 * (Sin(Lat)) ^ 3 + 0.6976 * (Sin(Lat)) ^ 5 + 0.0039 * (Sin(Lat)) ^ 7) * Cos(Lat)

End If

ll = Lon - L0

t = Tan(Lat)

Itp = ep1 * Cos(Lat) ^ 2

W = Sqr(1 - ep * Sin(Lat) ^ 2)

V = Sqr(1 + ep1 * Cos(Lat) ^ 2)

M = c / V ^ 3

N = a / W

'x = X0 + N * t * (Cos(Lat)) ^ 2 * ll ^ 2 / 2 + N * t * (5 - t * t + 9 * Itp + 4 * Itp * Itp) * (Cos(Lat)) ^ 4 * ll ^ 4 / 24 + N * t * (61 - 58 * t ^ 2 + t ^ 4 + 270 * Itp - 330 * t ^ 2 * Itp) * (Cos(Lat)) ^ 6 * ll ^ 6 / 720 + N * t * (1385 - 3111 * t ^ 2 + 543 * t ^ 4 - t ^ 6) * Cos(Lat) ^ 8 * ll ^ 8 / 40320

x = X0 + N * t * (Cos(Lat)) ^ 2 * ll ^ 2 / 2 + N * t * (5 - t * t + 9 * Itp ^ 2 + 4 * Itp ^ 4) * (Cos(Lat)) ^ 4 * ll ^ 4 / 24 + N * t * (61 - 58 * t ^ 2 + t ^ 4 + 270 * Itp ^ 2 - 330 * t ^ 2 * Itp ^ 2) * (Cos(Lat)) ^ 6 * ll ^ 6 / 720 + N * t * (1385 - 3111 * t ^ 2 + 543 * t ^ 4 - t ^ 6) * Cos(Lat) ^ 8 * ll ^ 8 / 40320

y = N * Cos(Lat) * ll + N * (1 - t * t + Itp) * (Cos(Lat)) ^ 3 * ll ^ 3 / 6 + N * (5 - 18 * t * t + t ^ 4 + 14 * Itp - 58 * Itp * t * t) * (Cos(Lat)) ^ 5 * ll ^ 5 / 120 + N * (61 - 479 * t ^ 2 + 179 * t ^ 4 - t ^ 6) * Cos(Lat) ^ 7 * ll ^ 7 / 5040

r = Sin(Lat) * ll + Sin(Lat) * (Cos(Lat)) ^ 2 * ll ^ 3 * (1 + 3 * Itp + 2 * Itp ^ 2) / 3 + Sin(Lat) * (Cos(Lat)) ^ 4 * ll ^ 5 * (2 - t * t) / 15

r = Degree(r)

y = y + 500000#

End Sub

'高斯反算

Private Sub DadiFs()

Dim t As Double, Itp As Double, X0 As Double, Bf As Double, N As Double

Dim v As Double, ll As Double, W As Double, M As Double, L0 As Double

L0 = Radian(Lo)

X0 = x * 0.000001

y = y - 500000#

If Tq = 0 Then

a = 6378245 '54椭球参数

b = 6356863.01877305

ep = 0.006693421622966

ep1 = 0.006738525414683

f = (a - b) / a

c = a ^ 2 / b

d = b ^ 2 / a

If X0 <3 Then

Bf = 9.04353301294 * X0 - 0.00000049604 * X0 ^ 2 - 0.00075310733 * X0 ^ 3 - 0.00000084307 * X0 ^ 4 - 0.00000426055 * X0 ^ 5 - 0.00000010148 * X0 ^ 6

ElseIf X0 <6 Then

Bf = 27.11115372595 + 9.02468257083 * (X0 - 3) - 0.00579740442 * (X0 - 3) ^ 2 - 0.00043532572 * (X0 - 3) ^ 3 + 0.00004857285 * (X0 - 3) ^ 4 + 0.00000215727 * (X0 - 3) ^ 5 - 0.00000019399 * (X0 - 3) ^ 6

End If

Else

a = 6378140 '75椭球参数

b = 6356755.28815753

ep = 0.006694384999588

ep1 = 0.006739501819473

f = (a - b) / a

c = a ^ 2 / b

d = b ^ 2 / a

If X0 <3 Then

Bf = 9.04369066313 * X0 - 0.00000049618 * X0 ^ 2 - 0.00075325505 * X0 ^ 3 - 0.0000008433 * X0 ^ 4 - 0.00000426157 * X0 ^ 5 - 0.0000001015 * X0 ^ 6

ElseIf X0 <6 Then

Bf = 27.11162289465 + 9.02483657729 * (X0 - 3) - 0.00579850656 * (X0 - 3) ^ 2 - 0.00043540029 * (X0 - 3) ^ 3 + 0.00004858357 * (X0 - 3) ^ 4 + 0.00000215769 * (X0 - 3) ^ 5 - 0.00000019404 * (X0 - 3) ^ 6

End If

End If

Bf = Bf * Pi / 180#

t = Tan(Bf)

Itp = ep1 * Cos(Bf) ^ 2

W = Sqr(1 - ep * Sin(Bf) ^ 2)

v = Sqr(1 + ep1 * Cos(Bf) ^ 2)

M = c / v ^ 3

N = a / W

Lat = Bf - 0.5 * v ^ 2 * t * ((y / N) ^ 2 - (5 + 3 * t * t + Itp - 9 * Itp * t * t) * (y / N) ^ 4 / 12 + (61 + 90 * t * t + 45 * t ^ 4) * (y / N) ^ 6 / 360)

ll = ((y / N) - (1 + 2 * t * t + Itp) * (y / N) ^ 3 / 6 + (5 + 28 * t * t + 24 * t ^ 4 + 6 * Itp + 8 * Itp * t * t) * (y / N) ^ 5 / 120) / Cos(Bf)

r = y * t / N - y ^ 3 * t * (1 + t * t - Itp) / (3 * N ^ 3) + y ^ 5 * t * (2 + 5 * t * t + 3 * t ^ 4) / (15 * N ^ 5)

Lat = Degree(Lat)

Lon = Degree(L0 + ll)

r = Degree(r)

End Sub

有了正反算,换带也就完成了!

用到的子程序:

Public Const Pi = 3.14159265358979, p = 206264.806

Public Cktq As String

'角度化弧度

Public Function Radian(a As Double) As Double

Dim Ro As Double

Dim c As Double

Dim Fs As Double

Dim Ib As Integer

Dim Ic As Integer

If a <0 Then a = -a: t = 1

Ro = Pi / 180#

Ib = Int(a)

c = (a - Ib) * 100#

Ic = Int(c + 0.000000000001)

Fs = (c - Ic) * 100#

If t = 1 Then Radian = -(Ib + Ic / 60# + Fs / 3600#) * Ro Else Radian = (Ib + Ic / 60# + Fs / 3600#) * Ro

End Function

'弧度化角度

Public Function Degree(a As Double) As Double

Dim Bo As Double

Dim Fs As Double

Dim Im As Integer

Dim Id As Integer

If a <0 Then a = -a: t = 1

Bo = a

Call DMS(Bo, Id, Im, Fs)

If t = 1 Then Degree = -(Id + Im / 100# + Fs / 10000#) Else Degree = Id + Im / 100# + Fs / 10000#

End Function

Public Sub DMS(a As Double, Id As Integer, Im As Integer, Fs As Double)

Dim Bo As Double

Dim c As Double

c = a

c = 180# / Pi * c

Id = Int(c)

Bo = (c - Id) * 60

Im = Int(Bo)

Fs = (Bo - Im) * 60

End Sub

'取位计算

Public Function Qw(a As Double, Ws As Integer) As Double

Qw = Int(a * 10 ^ Ws + 0.5) / 10 ^ Ws

End Function

另外,站长团上有产品团购,便宜有保证

高斯投影坐标正反算

一、基本思想:

高斯投影正算公式就是由大地坐标(L ,B )求解高斯平面坐标(x ,y ),而高斯投影反算公式则是由高斯平面坐标(x ,y)求解大地坐标(L ,B).

二、计算模型:

基本椭球参数:

椭球长半轴a

椭球扁率f

椭球短半轴:(1)b a f =-

椭球第一偏心率

第 1 页

高斯计_高精度_高效率_高品质

全面覆盖电离辐射, 非电离辐射及直流磁场的检测。低频电磁场还可在线监测, 多种功能供用户选配

点击立即咨询,了解更多详情

咨询

深圳市柯雷科技开发 广告

:e = 椭球第二偏心率

:e '=高斯投影正算公式:此公式换算的精度为0.001m

64256

442234

22)5861(cos sin 720)495(cos 24cos sin 2l t t B B N l t B simB N l B B N X x ''+-''+''++-''+''⋅''+

=ρηηρρ 52224255

32233

)5814185(cos 120)1(cos 6cos l t t t B N l t B

第 2 页

N l B N y ''-++-''+''+-''+''⋅''=ηηρηρρ

其中:角度都为弧度

B 为点的纬度,0l L L ''=-,L 为点的经度,0L 为中央子午线经度;

N 为子午圈曲率半径,1222

(1sin )N a e B -=-;

tan t B =; 222cos e B η'=

180

3600ρπ''=*

其中X 为子午线弧长:

2402464661616sin cos ()(2)sin sin 33X a B B B a a a a a B a B ⎡⎤=--++-+⎢⎥⎣⎦

第 3 页

02468,,,,a a a a a 为基本常量,按如下公式计算:

2004682426844686868

83535281612815722321637816323216128m a m m m m m m a m m m a m m m m a m a ⎧=++++⎪⎪⎪=+++⎪⎪⎪=++⎨⎪⎪=+⎪⎪⎪=⎪⎩

02468,,,,m m m m m 为基本常量,按如下公式计算:

22222020426486379(1)5268

m a e m e m m e m m e m m e m =-====

高斯投影反算公式:此公式换算的精度为0.0001’'。

()()()()22222432465

第 4 页

3

2235

2422250

53922461904572012cos 6cos 5282468120cos f f f f f f f f f f f f f f f f f f f f f f

f f f f f f f

t t B B y t t y

M N M N t y t t y

M N y y l t N B N B y t t t N B L l L ηηηηη=-

+++--++=-+++++++=+

其中: 0L 为中央子午线经度。

第 5 页

f B 为底点纬度,也就是当x X =时的子午线弧长所对应的纬度。按照子午线弧长公式:68240sin 2sin 4sin 6sin82468

a a a a X a B B B B B =-+-+,迭代进行计算; 初始开始时设:10f B X a =

以后每次迭代按下式计算:

10

6824(())()sin 2sin 4sin 6sin82468i

i f f i

i i i i f

f f f f B X X F B a a a a a F B B B B B +=-=-+-+

重复迭代至1i

第 6 页

i

f f B B ε+-<;为止。

1222

(1sin )f f N a e B -=-

3

2222(1)(1sin )f f M a e e B -=-- tan f f t B =;

222cos f

f e B η'=

海福特椭球(1910)我国52年以前基准椭球 a=6378388m b=6356911。9461279m α=0.33670033670

克拉索夫斯基椭球(1940 Krassovsky)

第 7 页

北京54坐标系基准椭球 a=6378245m b=6356863。018773m α=0.33523298692

1975年I 。U 。G.G 推荐椭球(国际大地测量协会1975) 西安80坐标系基准椭球

a=6378140m b=6356755.2881575m α=0.0033528131778

WGS-84椭球(GPS 全球定位系统椭球、17届国际大地测量协会) WGS —84 GPS 基准椭球

a=6378137m b=6356752.3142451m α=0。00335281006247

三、程序代码函数:

/************高斯投影正算函数***************

第 8 页

输入 : double a ,f 椭球参数,B,L 为大地坐标,L0为中央子午线的经度,单位为弧度,x,y 为高斯平面坐标,y 加上了500000常量

返回:none

******************************************/

void gaosiforward (double a ,double f ,double B ,double L ,double L0,double &x ,double &y ) {

double b , c ,e1, e2; //短半轴,极点处的子午线曲率半径,第一偏心率,第二偏心率

double l , W ,N , M , daihao ;//W 为常用辅助函数,N 为子午圈曲率半径,M 为卯酉圈曲率半径

第 9 页

double X //子午线弧长,高斯投影的坐标

double ruo , ita , sb , cb ,t

double m [5],n [5];

//计算一些基本常量

{

b =a *(1-f );

e1=sqrt (a *a -b *b )/a

e2=sqrt (a *a -b *b )/b

c =a *a /b ;

m [0]=a *(1-e1*e1) m [1]=3*(e1*e1*m [0])/2。0

m[2]=5*(e1*e1*m[1])/4。0

第 10 页

m[3]=7*(e1*e1*m[2])/6.0

m[4]=9*(e1*e1*m[3])/8。0;

n[0]=m[0]+m[1]/2+3*m[2]/8+5*m[3]/16+35*m[4]/128

n[1]=m[1]/2+m[2]/2+15*m[3]/32+7*m[4]/16;

n[2]=m[2]/8+3*m[3]/16+7*m[4]/32

n[3]=m[3]/32+m[4]/16;

n[4]=m[4]/128 /////by kjh 2014。5。22 把改成了

//由纬度计算子午线弧长

第 11 页

{

X=n[0]*B—sin(B)*cos(B)*((n[1]-n[2]+n[3])+(2*n[2]-(16*n[3]/3.0))*sin(B)*sin(B)+16*n[3]*pow(sin(B),4)/3。0)

}

l=L—L0;//弧度

ita=e2*cos(B)

sb=sin(B);

cb=cos(B);

W=sqrt(1-e1*e1*sb*sb);

N=a/W;

第 12 页

t=tan(B)

ruo=(180/Pi)*3600

x=(X+N*sb*cb*l*l/2+N*sb*cb*cb*cb*(5—t*t+9*ita*ita+4*ita*ita*ita*ita)*l*l*l *l/24+N*sb*cb*cb*cb*cb*cb*(61-58*t*t+t*t*t*t)*l*l*l*l*l*l/720)

y=(N*cb*l+N*cb*cb*cb*(1-t*t+ita*ita)*l*l*l/6+N*cb*cb*cb*cb*cb*(5—18*t*t+t*t*t*t+14*ita*ita-58*ita*ita*t*t)*l*l*l*l*l/120);

y=y+500000

}

/**************高斯反算函数***************

第 13 页

输入: double a ,f 椭球参数, x,y为高斯平面坐标,L0为中央子午线的经度; B,L为大地坐标,单位为弧度

*返回:none

*****************************/

void gaosibackward(double a,double f,double x,double y,double L0,double&B,double &L)

double b, c,e1, e2//短半轴,极点处的子午线曲率半径,第一偏心率,第二偏心率

double Bf,itaf,tf,Nf,Mf,Wf;

double l

第 14 页

double m[5],n[5]

y=y-500000

//计算一些基本常量

b=a*(1—f);

e1=sqrt(a*a—b*b)/a

e2=sqrt(a*a-b*b)/b

c=a*a/b

m[0]=a*(1-e1*e1)

m[1]=3*(e1*e1*m[0])/2.0;

m[2]=5*(e1*e1*m[1])/4。0;

第 15 页

m[3]=7*(e1*e1*m[2])/6。0;

m[4]=9*(e1*e1*m[3])/8.0;

n[0]=m[0]+m[1]/2+3*m[2]/8+5*m[3]/16+35*m[4]/128;

n[1]=m[1]/2+m[2]/2+15*m[3]/32+7*m[4]/16

n[2]=m[2]/8+3*m[3]/16+7*m[4]/32;

n[3]=m[3]/32+m[4]/16

n[4]=m[4]/128;

//计算Bf

第 16 页

double Bf1,Bfi0,Bfi1,FBfi;

Bf1=x/n[0]

Bfi0=Bf1

Bfi1=0

FBfi=0;

int num=0;

do

num=0

FBfi=0.0-n[1]*sin(2*Bfi0)/2.0+n[2]*s

第 17 页

in(4*Bfi0)/4。0-n[3]*sin(6*Bfi0)/6。0;

Bfi1=(x—FBfi)/n[0]

if (fabs(Bfi1—Bfi0)>(Pi*pow(10.0,-8)/(36*18)))

{

num=1;

Bfi0=Bfi1;

}while(num==1)

Bf=Bfi1;

}

tf=tan(Bf);

第 18 页

Wf=sqrt(1-e1*e1*sin(Bf)*sin(Bf))

Nf=a/Wf;

Mf=a*(1—e1*e1)/(Wf*Wf*Wf);

itaf=e2*cos(Bf)

B=Bf-tf*y*y/(2*Mf*Nf)+tf*(5+3*tf*tf+itaf*itaf—9*itaf*itaf*tf*tf)*pow(y,4)/(24*Mf*pow(Nf,3))—tf*(61+90*tf*tf+45*pow(tf,4))*pow(y,6)/(720*Mf*pow(Nf,5))

l=y/(Nf*cos(Bf))-(1+2*tf*tf+itaf*itaf)*pow(y,3)/(6*pow(Nf,3)*cos(Bf))+(5+28*

tf*tf+24*pow(tf,4)+6*itaf*itaf+8*itaf*itaf*tf*tf)*pow(y,5)/(120*pow(Nf,5)*

第 19 页

cos(Bf))

L=l+L0

2014-5—22

’输入: double a ,f 椭球参数,B,L为大地坐标,L0为中央子午线的经度,单位为弧度,x,y为高斯平面坐标,y加上了常量

Private Function gaosiforward(ByVal a As Double, ByVal f As Double, ByVal B As Double,ByVal L As Double,ByVal L0 As Double)As Double()

Dim x, y, xy(2) As Double

Dim bb, c, e1, e2 As Double’短半轴,极点

第 20 页

处的子午线曲率半径,第一偏心率,第二偏心率

Dim ll, W, N, M, daihao As Double’W为常用辅助函数,N为子午圈曲率半径,M为卯酉圈曲率半径

Dim xx As Double'子午线弧长,高斯投影的坐标

Dim ruo, ita, sb, cb, t As Double

Dim mm(5), nn(5) As Double

bb = a * (1 — f)

e1 = Math。Sqrt(a * a - bb * bb) / a

e2 = Math.Sqrt(a * a — bb * bb) / bb

c = a * a / bb

第 21 页

mm(0) = a *(1 - e1 * e1)

mm(1) = 3 *(e1 * e1 * mm(0)) / 2.0

mm(2) = 5 * (e1 * e1 * mm(1)) / 4.0

mm(3) = 7 *(e1 * e1 * mm(2)) / 6。0

mm(4) = 9 * (e1 * e1 * mm(3)) / 8.0

nn(0) = mm(0) + mm(1) / 2 + 3 * mm(2) / 8 + 5 * mm(3) / 16 + 35 * mm(4) / 128nn(1) = mm(1) / 2 + mm(2) / 2 + 15 * mm(3) / 32 + 7 * mm(4) / 16

nn(2) = mm(2) / 8 + 3 * mm(3) / 16 + 7 * mm(4) / 32

nn(3) = mm(3) / 32 + mm(4) / 16

nn(4) = mm(4) / 128

第 22 页

xx = nn(0) * B — Sin(B) * Cos(B)*((nn(1) - nn(2) + nn(3)) + (2 * nn(2) - (16 * nn(3) / 3。0)) * Sin(B)* Sin(B) + 16 * nn(3) * Pow(Sin(B), 4) / 3.0)

ll = L — L0 ’弧度

ita = e2 * Cos(B)

sb = Sin(B)

cb = Cos(B)

W = Sqrt(1 - e1 * e1 * sb * sb)

N = a / W

t = Tan(B)

ruo = (180 / PI) * 3600

第 23 页

x = (xx + N * sb * cb * ll * ll / 2 + N * sb * cb * cb * cb * (5 - t * t + 9 * ita * ita + 4 * ita * ita * ita * ita) * ll * ll * ll * ll / 24 + N * sb * cb * cb * cb * cb * cb * (61 — 58 * t * t + t * t * t * t) * ll * ll * ll * ll * ll * ll / 720)

第 24 页

百度文库

搜索

百度文库10亿海量资料,查找管理一应俱全

打开APP

弧长参数计算:

i_a = x1

i_a_ = x2

//if i_a = 6378245.000 and i_a_ = 298.3 then

// i_a0 = 111134.8611

// i_a1 = 32005.7799

// i_a2 = 133.9238

// i_a3 = 0.6973

// i_a4 = 0.0039

//elseif i_a = 6378140.000 and i_a_ = 298.257 then //xi80

// i_a0 = 111133.0047

// i_a1 = 32009.8575

// i_a2 = 133.9602

// i_a3 = 0.6976

// i_a4 = 0.0039

//else

// return -1

//end if

i_b = i_a - i_a/i_a_

i_c = i_a*i_a/i_b

i_e1 = (i_a + i_b)*(i_a - i_b)/i_a/i_a

i_e2 = (i_a + i_b)*(i_a - i_b)/i_b/i_b

i_a0 = 1.0 + (3.0/4.0 + (45.0/64.0 + ( 525.0/768.0 + (33075.0/49152.0 + ( 654885.0/983040.0)*i_e1)*i_e1)*i_e1)*i_e1)*i_e1

i_a1 = (3.0/4.0 + (15.0/16.0 + (1575.0/1536.0 + (6615.0/6144.0 + (1091475.0/983040.0)*i_e1)*i_e1)*i_e1)*i_e1)*i_e1

i_a2 = ((15.0/64.0 + ( 315.0/768.0 + (6615.0/12288.0 + ( 155925.0/245760.0)*i_e1)*i_e1)*i_e1)*i_e1)*i_e1

i_a3 = (((105.0/1536.0 + (945.0/6144.0 + (467775.0/1966080.0)*i_e1)*i_e1)*i_e1)*i_e1)*i_e1

i_a4 = ((((945.0/49152.0 + ( 51975.0/983040.0)*i_e1)*i_e1)*i_e1)*i_e1)*i_e1

i_a5 = ((((( 10395.0/1966080.0)*i_e1)*i_e1)*i_e1)*i_e1)*i_e1

double d

d = i_a*(1.0 - i_e1)

i_a0 = i_a0*d

i_a1 = -i_a1*d/2.0

i_a2 = i_a2*d/4.0

i_a3 = -i_a3*d/6.0

i_a4 = i_a4*d/8.0

i_a5 = -i_a5*d/10.0

---------------------------------------------------------------------------------------------

计算弧长:

i_a0* x + &

i_a1* sin( 2*x) + &

i_a2* sin( 4*x) + &

i_a3* sin( 6*x) + &

i_a4* sin( 8*x) + &

i_a5* sin(10*x)

----------------------------------------------------------------------------

正算公式:

GX_L0 = L0

GX_L = L - L0

GX_B = B

i_tanB = tan(gx_B)

i_tanBB = i_tanB*i_tanB

i_cosB = cos(gx_B)

i_cosBBLL = i_cosB*i_cosB*GX_L*GX_L

i_nn = i_e2*i_cosB*i_cosB

i_N = i_c/sqrt(1.0 + i_nn)

GX_X =getarc(GX_B) + i_N*i_tanB*i_cosBBLL*(0.5 + &

i_cosBBLL*((5.0 - i_tanBB +9.0*i_nn + 4.0*i_nn*i_nn)/24.0 + &

i_cosBBLL*((61.0 -58.0*i_tanBB + i_tanBB*i_tanBB)/720.0)))

GX_Y = i_N*i_cosB*GX_L*(1.0 + i_cosBBLL*((i_nn - i_tanBB + 1.0)/6.0+ &

i_cosBBLL*((5.0 + (i_tanBB - 18.0)*i_tanBB+ &

(14.0 -58.0*i_tanBB)*i_nn)/120.0)))

http://www.gisforum.net/bbs/dispbbs.asp?BoardID=44&ID=55396


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12038608.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-20
下一篇 2023-05-20

发表评论

登录后才能评论

评论列表(0条)

保存