Python的爬虫库其实很多,像常见的urllib,requests,bs4,lxml等,初始入门爬虫的话,可以学习一下requests和bs4(BeautifulSoup)这2个库,比较简单,也易学习,requests用于请求页面,BeautifulSoup用于解析页面,下面我以这2个库为基础,简单介绍一下Python如何爬取网页静态数据和网页动态数据,实验环境win10+python3.6+pycharm5.0,主要内容如下:
Python爬取网页静态数据
这个就很简单,直接根据网址请求页面就行,这里以爬取糗事百科上的内容为例:
1.这里假设我们要爬取的文本内容如下,主要包括昵称、内容、好笑数和评论数这4个字段:
打开网页源码,对应网页结构如下,很简单,所有字段内容都可以直接找到:
2.针对以上网页结构,我们就可以编写相关代码来爬取网页数据了,很简单,先根据url地址,利用requests请求页面,然后再利用BeautifulSoup解析数据(根据标签和属性定位)就行,如下:
程序运行截图如下,已经成功爬取到数据:
Python爬取网页动态数据
很多种情况下,网页数据都是动态加载的,直接爬取网页是提取不到任何数据的,这时就需要抓包分析,找到动态加载的数据,一般情况下就是一个json文件(当然,也可能是其他类型的文件,像xml等),然后请求解析这个json文件,就能获取到我们需要的数据,这里以爬取人人贷上面的散标数据为例:
1.这里假设我们爬取的数据如下,主要包括年利率,借款标题,期限,金额,进度这5个字段:
2.按F12调出开发者工具,依次点击“Network”->“XHR”,F5刷新页面,就可以找到动态加载的json文件,具体信息如下:
3.接着,针对以上抓包分析,我们就可以编写相关代码来爬取数据了,基本思路和上面的静态网页差不多,先利用requests请求json,然后再利用python自带的json包解析数据就行,如下:
程序运行截图如下,已经成功获取到数据:
至此,我们就完成了利用python来爬取网页数据。总的来说,整个过程很简单,requests和BeautifulSoup对于初学者来说,非常容易学习,也易掌握,可以学习使用一下,后期熟悉后,可以学习一下scrapy爬虫框架,可以明显提高开发效率,非常不错,当然,网页中要是有加密、验证码等,这个就需要自己好好琢磨,研究对策了,网上也有相关教程和资料,感兴趣的话,可以搜一下,希望以上分享的内容能对你上有所帮助吧,也欢迎大家评论、留言。
目录:1. PC网页爬虫
2. H5网页爬虫
3. 微信小程序爬虫
4. 手机APP爬虫
爬取超级猩猩的课表,该平台仅提供了微信小程序这一个途径,前面两种针对html网页的爬取方式都不再适用。
采用抓包分析是我们制定方案的第一步。
我用的Mac电脑,fiddler只有一个简化版,所以另找了Charles这个类似的软件。启动Charles的代理,在手机WIFI中设置好对应的代理就可以开抓了。但是,抓到的https包的内容都是乱码,咋办?
Charles中提供了ssl证书,在手机端安装证书即可。推荐使用iPhone,直接安装描述文件即可。Android手机必须使用系统版本在7.0以下的才行,7.0以上还需要反编译什么的,太麻烦了。
很容易的定位到了超级猩猩微信小程序载入课表的后台接口。拿这个URL在浏览器里访问试试,直接返回了json结果!超级猩猩很友好!
提取对应的URL,放到浏览器中验证,也可以支持返回json包,剩下就是分析一下这个json的数据结构,按照需要的方式导出了。
直接通过接口的爬取效率非常高,几秒钟就拉取了全国各个门店的排课,相当舒心。(下图的录屏没有进行加速)
最后一个挑战就是对只有Android/iOS的APP端应用数据的爬取。请看下一章
请点击: <下一页>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)