1、当因变量(结果变量)不止一个时,可用多元方差分析(MANOVA)对它们同时进行分析。
library(MASS)
attach(UScereal)
y <- cbind(calories, fat, sugars)
aggregate(y, by = list(shelf), FUN = mean)
Group.1 calories fatsugars
1 1 119.4774 0.6621338 6.295493
2 2 129.8162 1.3413488 12.507670
3 3 180.1466 1.9449071 10.856821
cov(y)
calories fat sugars
calories 3895.24210 60.674383 180.380317
fat60.67438 2.713399 3.995474
sugars180.38032 3.995474 34.050018
fit <- manova(y ~ shelf)
summary(fit)
Df Pillai approx F num Df den Df Pr(>F)
shelf 1 0.195944.955 3 61 0.00383 **
Residuals 63
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
summary.aov(fit)
Response calories :
Df Sum Sq Mean Sq F valuePr(>F)
shelf1 45313 45313 13.995 0.0003983 ***
Residuals 63 2039823238
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Response fat :
Df Sum Sq Mean Sq F value Pr(>F)
shelf1 18.421 18.4214 7.476 0.008108 **
Residuals 63 155.236 2.4641
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Response sugars :
Df Sum Sq Mean Sq F value Pr(>F)
shelf1 183.34 183.34 5.787 0.01909 *
Residuals 63 1995.87 31.68
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
2、评估假设检验
单因素多元方差分析有两个前提假设,一个是多元正态性,一个是方差—协方差矩阵同质性。
(1)多元正态性
第一个假设即指因变量组合成的向量服从一个多元正态分布。可以用Q-Q图来检验该假设条件。
center <- colMeans(y)
n <- nrow(y)
p <- ncol(y)
cov <- cov(y)
d <- mahalanobis(y, center, cov)
coord <- qqplot(qchisq(ppoints(n), df = p), d, main = "QQ
Plot Assessing Multivariate Normality",
ylab = "Mahalanobis D2")
abline(a = 0, b = 1)
identify(coord$x, coord$y, labels = row.names(UScereal))
如果所有的点都在直线上,则满足多元正太性。
2、方差—协方差矩阵同质性即指各组的协方差矩阵相同,通常可用Box’s M检验来评估该假设
3、检测多元离群点
library(mvoutlier)
outliers <- aq.plot(y)
outliers
如下:
数据集a有变量:x1,x2,x3等等
求各变量的均值方差,代码如下:
mean(a$x1) var(a$x1)。
mean(a$x2) var(a$x2)。
mean(a$x3) var(a$x3)。
……
如果有无效值,需要在括号内加入na.rm=T。
R是用于统计分析、绘图的语言和 *** 作环境。
R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。
R可以看作贝尔实验室(AT&T BellLaboratories)的Rick Becker、John Chambers和Allan Wilks开发的S语言的一种实现。当然,S语言也是S-Plus的基础。
所以,两者在程序语法上可以说是几乎一样的,可能只是在函数方面有细微差别,程序十分容易地就能移植到一程序中,而很多一的程序只要稍加修改也能运用于R。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)