PWM控制直流电机实现上来说应该不难,最主要是要求:比如加速度,需要多块达到设定速度;
一般来讲有“开环的查表法”和“闭环的采集实时速度法”;
“开环查表”:前提是知道要达到的速度是哪些,然后去增加(或减少)PWM的占空比来看速度是否和设定的一致,然后将此时的占空比放到表格中,下次需要用时,直接根据设定速度查表格就行;这种控制方法适合于“负载”不变的情况,相对简单;
“闭环速度采集”:在硬件电路上要有速度采集系统(霍尔元件),根据反馈的速度大小来调节PWM的占空比,这种方法比较精确,适用于不同的“负载”,在控制速度的过程中要小心“超调”,也就是速度加的太快或者太慢(PWM占空比调节太快),可以通过试验来确定调节的快慢或者引入PID算法;
控制电机:要了解可控硅的使用。
例子:
51单片机直流电机的PWM速度控制程序的代码如下:
/* =======直流电机的PWM速度控制程序======== */
/* 晶振采用11.0592M,产生的PWM的频率约为91Hz */
#include<reg51.h>
#include<math.h>
#define uchar unsigned char
#define uint unsigned int
sbit en1=P2^0 /* L298的Enable A */
sbit en2=P2^1 /* L298的Enable B */
sbit s1=P2^2 /* L298的Input 1 */
sbit s2=P2^3 /* L298的Input 2 */
sbit s3=P2^4 /* L298的Input 3 */
sbit s4=P2^5 /* L298的Input 4 */
uchar t=0 /* 中断计数器 */
uchar m1=0 /* 电机1速度值 */
uchar m2=0 /* 电机2速度值 */
uchar tmp1,tmp2/* 电机当前速度值 */
/* 电机控制函数 index-电机号(1,2)speed-电机速度(-100—100) */
void motor(uchar index, char speed)
{
if(speed>=-100 &&speed<=100)
{
if(index==1) /* 电机1的处理 */
{
m1=abs(speed)/* 取速度的绝对值 */
if(speed<0) /* 速度值为负则反转 */
{
s1=0
s2=1
}
else /* 不为负数则正转 */
{
s1=1
s2=0
}
}
if(index==2) /* 电机2的处理 */
{
m2=abs(speed)/* 电机2的速度控制 */
if(speed<0) /* 电机2的方向控制 */
{
s3=0
s4=1
}
else
{
s3=1
s4=0
}
}
}
}
void delay(uint j) /* 简易延时函数 */
{
for(jj>0j--)
}
void main()
{
char i
TMOD=0x02/* 设定T0的工作模式为2 */
TH0=0x9B/* 装入定时器的初值 */
TL0=0x9B
EA=1/* 开中断 */
ET0=1/* 定时器0允许中断 */
TR0=1/* 启动定时器0 */
while(1) /* 电机实际控制演示 */
{
for(i=0i<=100i++) /* 正转加速 */
{
motor(1,i)
motor(2,i)
delay(5000)
}
for(i=100i>0i--) /* 正转减速 */
{
motor(1,i)
motor(2,i)
delay(5000)
}
for(i=0i<=100i++) /* 反转加速 */
{
motor(1,-i)
motor(2,-i)
delay(5000)
}
for(i=100i>0i--) /* 反转减速 */
{
motor(1,-i)
motor(2,-i)
delay(5000)
}
}
}
void timer0() interrupt 1 /* T0中断服务程序 */
{
if(t==0) /* 1个PWM周期完成后才会接受新数值 */
{
tmp1=m1
tmp2=m2
}
if(t<tmp1) en1=1else en1=0/* 产生电机1的PWM信号 */
if(t<tmp2) en2=1else en2=0/* 产生电机2的PWM信号 */
t++
if(t>=100) t=0/* 1个PWM信号由100次中断产生 */
}
你那个地方不明白?能具体说说吗?我看程序已经有不少注释了啊?
下面的比较多,复杂些,先简单的说下吧:
一、加速减速,就是增加或减少脉冲宽度,改变电机速度!脉冲的宽度由
1、CLK=0的状态持续,由T1的定时决定;
2、CLK=1的状态持续,由(T0-T1)的时间决定;
二、定时器中断TH0=0x00 TL0=0x00
1、T0定时器工作1方式,T0定时器启动后,从TH0、TL0赋值的计数值开始增加,增加到0XFFFF后,T0中断!
2、T0溢出后(中断),T0计数器不会自动停止,所以需要重新给T0定时器赋值!赋值后,进入下一个计数周期!
3、例子中,T0定时器从0x0000开始计数,也就是增加0xFFFF后进行中断!定时时间为 (0xFFFF / ( 晶振周期/12 ))) 秒,若晶振为12M,则定时为,65.536ms!
分析程序,从main开始分析,先将起始开始的时序图画出:
如下图!
从时序图可以看出,CLK为PWM输出,
1、CLK=0的状态持续,由T1的定时决定;
2、CLK=1的状态持续,由T0-T1的时间决定;
而 main 函数中的 while(1) 部分,进行的就是PWM调整程序。
1、 if (K3==0) //高电平逆时钟转,低电平顺时钟转
{
ZF=0
}
else
{
ZF=1
}
根据程序推测,程序若为电机控制,K3开关为0时,ZF=0,顺时针转,K3开关为1时,ZF=1,逆时针转。
2、
if(K1==0) //按下加速键
{
delay(1)
PWML++ //调宽值低四位加1
if(PWML==0x00)
{
PWMH++
} //调宽值高四位加1
if (PWMH==0xFF) //最大值时
{
PWMH=0xFE
}
}
K1按键,加速按键,增加T1定时器计数起始时间,也就是减少T1计数时间,减少CLK=0的时间。
3、
if(K2==0) //按下减速键
{
delay(1)
PWML-- //调宽值低四位减1
if (PWML==0x00)
{
PWMH--
} //调宽值高四位减1
if (PWMH==0x00)
{
PWMH=0x01
} //最小值时
}
K2按键,减速按键,降低T1定时器计数起始时间,也就是增加T1计数时间,增加CLK=0的时间。
4、不论加速、减速,T0的时间都不变,CLK=0和CLK=1总持续时间不变{ (Tclk0+Tclk1)=T0 }。
程序不难,图不好画啊!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)