matlab如何svm实现图像分类输出像素点

matlab如何svm实现图像分类输出像素点,第1张

matlab如何svm实现图像分类输出像素点,这里分享下 *** 作方法。

设备:华硕笔记本

系统:win10

软件:matlab2012

1、首先双击桌面matlab图标,打开matlab软件。

2、然后在打开的软件中,点击左上角新建m文件。

3、然后输入如图所示的代码。

4、最后点击运行程序,即可输出两幅图像像素点。

拉格朗日

function y=lagrange(x0,y0,x)

n=length(x0)m=length(x)

for i=1:m

z=x(i)

s=0.0

for k=1:n

p=1.0

for j=1:n

if j~=k

p=p*(z-x0(j))/(x0(k)-x0(j))

end

end

s=p*y0(k)+s

end

y(i)=s

end

SOR迭代法的Matlab程序

function [x]=SOR_iterative(A,b)

% 用SOR迭代求解线性方程组,矩阵A是方阵

x0=zeros(1,length(b))% 赋初值

tol=10^(-2)% 给定误差界

N=1000% 给定最大迭代次数

[n,n]=size(A)% 确定矩阵A的阶

w=1% 给定松弛因子

k=1

% 迭代过程

while k=N

x(1)=(b(1)-A(1,2:n)*x0(2:n)')/A(1,1)

for i=2:n

x(i)=(1-w)*x0(i)+w*(b(i)-A(i,1:i-1)*x(1:i-1)'-A(i,i+1:n)*x0(i+1:n)')/A(i,i)

end

if max(abs(x-x0))=tol

fid = fopen('SOR_iter_result.txt', 'wt')

fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n')

fprintf(fid,'迭代次数: %d次\n\n',k)

fprintf(fid,'x的值\n\n')

fprintf(fid, '%12.8f \n', x)

break

end

k=k+1

x0=x

end

if k==N+1

fid = fopen('SOR_iter_result.txt', 'wt')

fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n')

fprintf(fid,'迭代次数: %d次\n\n',k)

fprintf(fid,'超过最大迭代次数,求解失败!')

fclose(fid)

end

Matlab中龙格-库塔(Runge-Kutta)方法原理及实现龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。该算法是构建在数学支持的基础之上的。龙格库塔方法的理论基础来源于泰勒公式和使用斜率近似表达微分,它在积分区间多预计算出几个点的斜率,然后进行加权平均,用做下一点的依据,从而构造出了精度更高的数值积分计算方法。如果预先求两个点的斜率就是二阶龙格库塔法,如果预先取四个点就是四阶龙格库塔法。一阶常微分方程可以写作:y'=f(x,y),使用差分概念。

(Yn+1-Yn)/h= f(Xn,Yn)推出(近似等于,极限为Yn')

Yn+1=Yn+h*f(Xn,Yn)

另外根据微分中值定理,存在0t1,使得

Yn+1=Yn+h*f(Xn+th,Y(Xn+th))

这里K=f(Xn+th,Y(Xn+th))称为平均斜率,龙格库塔方法就是求得K的一种算法。

利用这样的原理,经过复杂的数学推导(过于繁琐省略),可以得出截断误差为O(h^5)的四阶龙格库塔公式:

K1=f(Xn,Yn)

K2=f(Xn+h/2,Yn+(h/2)*K1)

K3=f(Xn+h/2,Yn+(h/2)*K2)

K4=f(Xn+h,Yn+h*K3)

Yn+1=Yn+h*(K1+2K2+2K3+K4)*(1/6)

所以,为了更好更准确地把握时间关系,应自己在理解龙格库塔原理的基础上,编写定步长的龙格库塔函数,经过学习其原理,已经完成了一维的龙格库塔函数。

仔细思考之后,发现其实如果是需要解多个微分方程组,可以想象成多个微分方程并行进行求解,时间,步长都是共同的,首先把预定的初始值给每个微分方程的第一步,然后每走一步,对多个微分方程共同求解。想通之后发现,整个过程其实很直观,只是不停的逼近计算罢了。编写的定步长的龙格库塔计算函数:

function [x,y]=runge_kutta1(ufunc,y0,h,a,b)%参数表顺序依次是微分方程组的函数名称,初始值向量,步长,时间起点,时间终点(参数形式参考了ode45函数)

n=floor((b-a)/h)%求步数

x(1)=a%时间起点

y(:,1)=y0%赋初值,可以是向量,但是要注意维数

for ii=1:n

x(ii+1)=x(ii)+h

k1=ufunc(x(ii),y(:,ii))

k2=ufunc(x(ii)+h/2,y(:,ii)+h*k1/2)

k3=ufunc(x(ii)+h/2,y(:,ii)+h*k2/2)

k4=ufunc(x(ii)+h,y(:,ii)+h*k3)

y(:,ii+1)=y(:,ii)+h*(k1+2*k2+2*k3+k4)/6

%按照龙格库塔方法进行数值求解

end

调用的子函数以及其调用语句:

function dy=test_fun(x,y)

dy = zeros(3,1)%初始化列向量

dy(1) = y(2) * y(3)

dy(2) = -y(1) + y(3)

dy(3) = -0.51 * y(1) * y(2)

对该微分方程组用ode45和自编的龙格库塔函数进行比较,调用如下:

[T,F] = ode45(@test_fun,[0 15],[1 1 3])

subplot(121)

plot(T,F)%Matlab自带的ode45函数效果

title('ode45函数效果')

[T1,F1]=runge_kutta1(@test_fun,[1 1 3],0.25,0,15)%测试时改变test_fun的函数维数,别忘记改变初始值的维数

subplot(122)

plot(T1,F1)%自编的龙格库塔函数效果

title('自编的 龙格库塔函数')

这个是非线性svm的:

1.命令函数部分:

clear%清屏

clc

X =load('data.txt')

n = length(X)%总样本数量

y = X(:,4)%类别标志

X = X(:,1:3)

TOL = 0.0001%精度要求

C = 1%参数,对损失函数的权重

b = 0%初始设置截距b

Wold = 0%未更新a时的W(a)

Wnew = 0%更新a后的W(a)

for i = 1 : 50%设置类别标志为1或者-1

y(i) = -1

end

a = zeros(n,1)%参数a

for i = 1 : n%随机初始化a,a属于[0,C]

a(i) = 0.2

end

%为简化计算,减少重复计算进行的计算

K = ones(n,n)

for i = 1 :n%求出K矩阵,便于之后的计算

for j = 1 : n

K(i,j) = k(X(i,:),X(j,:))

end

end

sum = zeros(n,1)%中间变量,便于之后的计算,sum(k)=sigma a(i)*y(i)*K(k,i)

for k = 1 : n

for i = 1 : n

sum(k) = sum(k) + a(i) * y(i) * K(i,k)

end

end

while 1%迭代过程

%启发式选点

n1 = 1%初始化,n1,n2代表选择的2个点

n2 = 2

%n1按照第一个违反KKT条件的点选择

while n1 <= n

if y(n1) * (sum(n1) + b) == 1 &&a(n1) >= C &&a(n1) <= 0

break

end

if y(n1) * (sum(n1) + b) >1 &&a(n1) ~= 0

break

end

if y(n1) * (sum(n1) + b) <1 &&a(n1) ~=C

break

end

n1 = n1 + 1

end

%n2按照最大化|E1-E2|的原则选取

E1 = 0

E2 = 0

maxDiff = 0%假设的最大误差

E1 = sum(n1) + b - y(n1)%n1的误差

for i = 1 : n

tempSum = sum(i) + b - y(i)

if abs(E1 - tempSum)>maxDiff

maxDiff = abs(E1 - tempSum)

n2 = i

E2 = tempSum

end

end

%以下进行更新

a1old = a(n1)

a2old = a(n2)

KK = K(n1,n1) + K(n2,n2) - 2*K(n1,n2)

a2new = a2old + y(n2) *(E1 - E2) / KK%计算新的a2

%a2必须满足约束条件

S = y(n1) * y(n2)

if S == -1

U = max(0,a2old - a1old)

V = min(C,C - a1old + a2old)

else

U = max(0,a1old + a2old - C)

V = min(C,a1old + a2old)

end

if a2new >V

a2new = V

end

if a2new <U

a2new = U

end

a1new = a1old + S * (a2old - a2new)%计算新的a1

a(n1) = a1new%更新a

a(n2) = a2new

%更新部分值

sum = zeros(n,1)

for k = 1 : n

for i = 1 : n

sum(k) = sum(k) + a(i) * y(i) * K(i,k)

end

end

Wold = Wnew

Wnew = 0%更新a后的W(a)

tempSum = 0%临时变量

for i = 1 : n

for j = 1 : n

tempSum= tempSum + y(i )*y(j)*a(i)*a(j)*K(i,j)

end

Wnew= Wnew+ a(i)

end

Wnew= Wnew - 0.5 * tempSum

%以下更新b:通过找到某一个支持向量来计算

support = 1%支持向量坐标初始化

while abs(a(support))<1e-4 &&support <= n

support = support + 1

end

b = 1 / y(support) - sum(support)

%判断停止条件

if abs(Wnew/ Wold - 1 ) <= TOL

break

end

end

%输出结果:包括原分类,辨别函数计算结果,svm分类结果

for i = 1 : n

fprintf('第%d点:原标号 ',i)

if i <= 50

fprintf('-1')

else

fprintf(' 1')

end

fprintf('判别函数值%f 分类结果',sum(i) + b)

if abs(sum(i) + b - 1) <0.5

fprintf('1\n')

else if abs(sum(i) + b + 1) <0.5

fprintf('-1\n')

else

fprintf('归类错误\n')

end

end

end

2.名为f的功能函数部分:

function y = k(x1,x2)

y = exp(-0.5*norm(x1 - x2).^2)

end

3.数据:

0.8871 -0.34918.3376 0

1.25191.20836.5041 0

-1.19251.93381.8790 0

-0.12772.43712.6971 0

1.96973.09066.0391 0

0.76030.82411.5323 0

1.63823.55164.4694 0

1.3438 -0.45395.9366 0

-1.3361 -2.02011.6393 0

-0.38863.30418.0450 0

-0.67806.0196 -0.4084 0

0.3552 -0.10511.2458 0

1.65604.07860.8521 0

0.81173.54516.8925 0

1.4773 -1.93403.9256 0

-0.0732 -0.95260.4609 0

0.15214.37112.2600 0

1.48200.74930.3475 0

0.61404.52618.3776 0

0.57213.34603.7853 0

0.52694.14524.3900 0

1.7879 -0.53902.5516 0

0.98855.76250.1832 0

-0.33182.4373 -0.6884 0

1.35785.47093.4302 0

2.7210 -1.12684.7719 0

0.5039 -0.10252.3650 0

1.11071.68853.7650 0

0.78621.35877.3203 0

1.0444 -1.58413.6349 0

1.77951.72764.9847 0

0.67101.4724 -0.5504 0

0.23030.2720 -1.6028 0

1.7089 -1.73994.8882 0

1.00590.55575.1188 0

2.30500.85452.8294 0

1.95550.98980.3501 0

1.71411.54133.8739 0

2.27495.32804.9604 0

1.61710.52703.3826 0

3.6681 -1.84094.8934 0

1.19641.87811.4146 0

0.77882.10480.0380 0

0.79165.09063.8513 0

1.08071.88495.9766 0

0.63402.60303.6940 0

1.9069 -0.06097.4208 0

1.65994.94098.1108 0

1.37630.88993.9069 0

0.84851.46886.7393 0

3.67926.10924.9051 1

4.38127.21486.1211 1

4.39713.41397.7974 1

5.07167.7253 10.5373 1

5.30788.81386.1682 1

4.14485.51562.8731 1

5.36096.04584.0815 1

4.74526.63521.3689 1

6.02746.5397 -1.9120 1

5.31743.01346.7935 1

7.24593.69703.1246 1

6.10078.10875.5568 1

5.99246.92385.7938 1

6.02635.33337.5185 1

3.64708.09156.4713 1

3.65437.22647.5783 1

5.01146.53353.5229 1

4.43487.4379 -0.0292 1

3.60873.73513.0172 1

3.53745.53547.6578 1

6.00482.0691 10.4513 1

3.14234.00035.4994 1

3.40127.15368.3510 1

5.54715.1372 -1.5090 1

6.50895.49118.0468 1

5.45836.76745.9353 1

4.17272.97983.6027 1

5.16728.41364.8621 1

4.88083.55141.9953 1

5.49384.19983.2440 1

5.45425.88034.4269 1

4.87433.96418.1417 1

5.97626.77112.3816 1

6.69457.28581.8942 1

4.73015.76521.6608 1

4.70845.36233.2596 1

6.04083.31387.7876 1

4.60248.35170.2193 1

4.70546.6633 -0.3492 1

4.71395.63626.2330 1

4.0850 10.71183.3541 1

6.10886.16354.2292 1

4.98365.40426.7422 1

6.13876.19492.5614 1

6.07007.03733.3256 1

5.68815.13639.9254 1

7.20582.35704.7361 1

4.29727.32454.7928 1

4.77948.12353.1827 1

3.92826.4092 -0.6339 1


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12080496.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-20
下一篇 2023-05-20

发表评论

登录后才能评论

评论列表(0条)

保存