软启动器采用三相反并联晶闸管作为调压器,用这种电路如三相全控桥式整流电路,使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。将其接入电源和电动机定子之间。
软启动与浪涌抑制完全不同,尽管这两种功能是互补的。两种动作都能在刚通电期间减小进入开关电源浪涌电流。然而不同的是,浪涌抑制直接对进入输入电容的电流进行限制,而软启动则通过作用于变换器控制电路使负载逐渐增大,这通常是通过增加脉冲宽度来实现的。这种渐进式启动不仅减小了输出电容和变换器部件上的浪涌电流应力,也减轻了在推挽式和桥式电路中变压 器“双倍磁通效应”(flux doubling)的问题。开关电源中,一般的做法是直流把交流输入电源连接到整流器,并通过了一个低阻抗噪声滤波器连接一个大的储能或滤波电容。为了避免在刚通电时出现大的浪涌电流,通常要提供浪涌控制电路。在大功率的系统中,经常由一个串联电阻组成浪涌抑制,在输入电容完全充电后,用双向三极晶闸管、SRC或继电器把该串联电阻短路。
为了允许输入电容在启动期间能完全充电,有必要推迟功率变换器的启动,这样输入电容在充满电之后,功率变换器才从输入电容取得电流。如果电容还未充满电,当浪涌控制晶闸管或双向三极晶闸管把浪涌抑制串联电阻旁路的时候,将会出现电流浪涌。此外,如果允许变换器以最大脉宽启动,将会有大的电流浪涌进入输出电容和电感,导致输出电压过冲,这是由输出电感的大电流和可能的主变压器的饱和效应导致的。
为了解决这些启动问题,通常要用控制电路提供启动延时和软启动程序。这将使变换器的初始接通延时,并允许输入电容完全充电。延时之后,软启动控制电路必须使变换器从零启动然后缓慢增加输出电压。这样才能使变压器和输出电感形成正常工作状态,防止推挽电路中的“双倍磁通效应”。由于输出电压的形成比较慢,所以副边电感的电流浪涌减小,输出电压过冲的趋势减弱。
软启动电路
典型的软启动电路如图1.9.1所示,运行情况如下。
当首次接上开关电源时,C1将放电。10V开关电源线上逐渐增大的电压将使放大器A1反相输入端为正,禁止脉宽调制器的输出。晶体管Q1将通过R2导通,保持C1放电状态直到送到变换器电路的300V直流线上形成的电压超过200V。
此时ZD1将开始导通,而Q1将关断。C1将通过R3充电,使A1的反相输入端电压拉向零状,并允许脉宽调制器的输出向驱动电路提供逐渐增大宽度的脉 冲,直到形成所需的输出电压。
当正确的输出电压建立后,放大器A2控制了放大器A1反相输入端的电压。C1将继续通过R3充电,使二极管D2反向偏置并使C1不再受调制器的影响。当开关电源关断后,C1将很快地通过D3放电,为下一次的启动动作重新设置C1.在输入电压较高时,D1可防止Q1被大于正向二极管压降的电压反向偏置。
图1.9.1 工作周期可控的开关电源软启动电路
此电路不仅提供接通延时和软启动,而且提供了低压禁止作用,防止变压器在供电电压完全建立前启动。
这一基本原理可能有很多的变化。图1.9.2所示为一个应用于图1.8.2中晶体管启动电路的软启动系统。此例中,直到辅助电容C3已充电和Q1关断时,ZD2的输入才变高,软启动才开始。因此,在本电路中,在软启动能够开始之前 开关电源电压和辅助电源电压必须能够正确地建立起来。这将保证变换器在正确的控制状况下启动。
这是一个很好的设计题目,对于许多工业领域都有应用价值。
是一个基础的时序电路。
也就是自动时间顺序,模拟和逻辑控制装置。
用单片机最容易实现,
用全分立元器件实现,最能够体现基础工作能力。
用全模拟电路来搭建,不涉及到功率器件,基本的成本也就十元人民币吧。
俺经常留意这类提问,可惜绝大多数,都是为了应付考试而来征求答案。
我 国 的 教 育 体 制 是 个 垃 JI 吗 ?
各国有自己的环境和文化传统,不能一概而论。美国麻省理工的教材、课件在网上无偿公布,全球华人也义务在翻译,谁都可以去学,可以考试合格的人呢就多了去啦,有几个国家能像他那样呢?
本人过去经常深入学生宿舍,免费指导学生学习模拟电路,并且自费购置元器件、材料、液晶显示板、计算机给他们进行实验,免费辅导他们建立数学模型,免费指导他们撰写发明专利文件。
一般的实验问题,当场指导他们自己动手解决。即使对于家境过得去的学生,也曾经提供不需偿还的现金支持。
如果学生是真的是对这行感兴趣,有什么想知道的,有什么疑惑,遇到什么无法解决的问题,只管来问我,只要本人知道的、有亲身经历经验的,我知无不言、言无不尽,我都毫无保留地立即予以解答。
一直想开个免费视频网站,免费指导全国同学,校方严格禁止本人使用计算机、示波器、服务器,完全没有工作空间。
因此而得罪了胡蒋军述,
被迫下**岗后依然坚持不懈。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)