Python 实现基于元胞自动机的生命游戏

Python 实现基于元胞自动机的生命游戏,第1张

这次我们使用 Python 来实现生命游戏,这是一种简单的元胞自动机。基于一定规则,程序可以自动从当前状态推演到下一状态。制作的成品如下:

先来说说生命游戏的规则:

在生命游戏中,每个单元格有两种状态,生与死。在我们的实现中,黄色的单元格代表活着的细胞,红色单元格表示死亡的细胞。而每一个细胞的下一状态,是由该细胞及周围的八个细胞的当前状态决定的。

具体而言:

当前细胞为活细胞

当前细胞为死细胞

无需安装的标准库:

第三方库:

导入模块:

首先,我们要知道细胞的生存空间是 N * N 的方阵,每个细胞都有两种状态:on, off。on 为 255,off 为 0。我们使用 numpy 产生 N * N 的方阵。np.random.choice 是在 State.on 和 State.off ,等概率随机抽取一个元素构造 N * N 的方阵。

其次我们要明白如何计算细胞周围活细胞的个数,尤其是边界一圈的细胞。我们可以采用余数的方式,假设棋盘大小为 9 * 9,那么对于左右边界而言,左边界的左边一个元素的计算方式: - 1 % 9 = 8,自动折到右边界上。将细胞周围八个单元格的数值加起来,除以 255,就可以得到细胞周围活细胞的个数。

接下来是对规则的翻译,即根据当前世代的状态,推演出下一世代,细胞的状态。initial 为当前世代的矩阵,data为下一世代的矩阵,我们根据 initial 的数值,计算出 data 的数值。total 为周围活细胞的个数,如果当前为活细胞,total 大于三或者小于二,下一世代就会死去。如果当前为死细胞,total 等于三,下一世代活细胞就会繁殖到该单元格上。

接下来是制作动图的过程,前面几行是绘图的基本 *** 作。之后,我们使用到了 matplotlib.animation 的方法。其中,FuncAnimation 接受的参数含义:fig 为图像句柄,generate 函数是我们更新每一帧图像所需数据的函数,下面会有介绍,fargs 为 genrate 函数的除去第一个参数的其他参数,第一个参数由 FuncAnimation 指定 framenum(帧数) 传给 generate 函数。frames 是帧数,interval 是更新图像间隔,save_count 为从帧到缓存的值的数量。

如果指定保存路径(html),则保存为 html 动画。

下面我们来看 generate 函数,NUM 为当迭代次数,frame_num 接收来自 FuncAnimation 的帧数。通过嵌套的 for 循环,我们逐个地更新方阵中各元素的状态。

最后,我们可以通过命令行参数,运行我们的程序:

-- size 参数为棋盘大小,--seed 为随机种子,用于产生不同的随机方阵。

高斯帕滑翔机q(Gosper Glider Gun)

可将 --gosper 更改为 --glider 滑翔机。--save 为动图保存的地址。

经过前面四章的学习,我们已经可以使用Requests库、Beautiful Soup库和Re库,编写基本的Python爬虫程序了。那么这一章就来学习一个专业的网络爬虫框架--Scrapy。没错,是框架,而不是像前面介绍的函数功能库。

Scrapy是一个快速、功能强大的网络爬虫框架。

可能大家还不太了解什么是框架,爬虫框架其实是实现爬虫功能的一个软件结构和功能组件的集合。

简而言之, Scrapy就是一个爬虫程序的半成品,可以帮助用户实现专业的网络爬虫。

使用Scrapy框架,不需要你编写大量的代码,Scrapy已经把大部分工作都做好了,允许你调用几句代码便自动生成爬虫程序,可以节省大量的时间。

当然,框架所生成的代码基本是一致的,如果遇到一些特定的爬虫任务时,就不如自己使用Requests库搭建来的方便了。

PyCharm安装

测试安装:

出现框架版本说明安装成功。

掌握Scrapy爬虫框架的结构是使用好Scrapy的重中之重!

先上图:

整个结构可以简单地概括为: “5+2”结构和3条数据流

5个主要模块(及功能):

(1)控制所有模块之间的数据流。

(2)可以根据条件触发事件。

(1)根据请求下载网页。

(1)对所有爬取请求进行调度管理。

(1)解析DOWNLOADER返回的响应--response。

(2)产生爬取项--scraped item。

(3)产生额外的爬取请求--request。

(1)以流水线方式处理SPIDER产生的爬取项。

(2)由一组 *** 作顺序组成,类似流水线,每个 *** 作是一个ITEM PIPELINES类型。

(3)清理、检查和查重爬取项中的HTML数据并将数据存储到数据库中。

2个中间键:

(1)对Engine、Scheduler、Downloader之间进行用户可配置的控制。

(2)修改、丢弃、新增请求或响应。

(1)对请求和爬取项进行再处理。

(2)修改、丢弃、新增请求或爬取项。

3条数据流:

(1):图中数字 1-2

1:Engine从Spider处获得爬取请求--request。

2:Engine将爬取请求转发给Scheduler,用于调度。

(2):图中数字 3-4-5-6

3:Engine从Scheduler处获得下一个要爬取的请求。

4:Engine将爬取请求通过中间件发送给Downloader。

5:爬取网页后,Downloader形成响应--response,通过中间件发送给Engine。

6:Engine将收到的响应通过中间件发送给Spider处理。

(3):图中数字 7-8-9

7:Spider处理响应后产生爬取项--scraped item。

8:Engine将爬取项发送给Item Pipelines。

9:Engine将爬取请求发送给Scheduler。

任务处理流程:从Spider的初始爬取请求开始爬取,Engine控制各模块数据流,不间断从Scheduler处获得爬取请求,直至请求为空,最后到Item Pipelines存储数据结束。

作为用户,只需配置好Scrapy框架的Spider和Item Pipelines,也就是数据流的入口与出口,便可完成一个爬虫程序的搭建。Scrapy提供了简单的爬虫命令语句,帮助用户一键配置剩余文件,那我们便来看看有哪些好用的命令吧。

Scrapy采用命令行创建和运行爬虫

PyCharm打开Terminal,启动Scrapy:

Scrapy基本命令行格式:

具体常用命令如下:

下面用一个例子来学习一下命令的使用:

1.建立一个Scrapy爬虫工程,在已启动的Scrapy中继续输入:

执行该命令,系统会在PyCharm的工程文件中自动创建一个工程,命名为pythonDemo。

2.产生一个Scrapy爬虫,以教育部网站为例http://www.moe.gov.cn:

命令生成了一个名为demo的spider,并在Spiders目录下生成文件demo.py。

命令仅用于生成demo.py文件,该文件也可以手动生成。

观察一下demo.py文件:

3.配置产生的spider爬虫,也就是demo.py文件:

4.运行爬虫,爬取网页:

如果爬取成功,会发现在pythonDemo下多了一个t20210816_551472.html的文件,我们所爬取的网页内容都已经写入该文件了。

以上就是Scrapy框架的简单使用了。

Request对象表示一个HTTP请求,由Spider生成,由Downloader执行。

Response对象表示一个HTTP响应,由Downloader生成,有Spider处理。

Item对象表示一个从HTML页面中提取的信息内容,由Spider生成,由Item Pipelines处理。Item类似于字典类型,可以按照字典类型来 *** 作。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12119731.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存