python数据挖掘是什么

python数据挖掘是什么,第1张

数据挖掘(data mining,简称DM),是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信

息和知识的过程。

python数据挖掘常用模块

numpy模块:用于矩阵运算、随机数的生成等

pandas模块:用于数据的读取、清洗、整理、运算、可视化等

matplotlib模块:专用于数据可视化,当然含有统计类的seaborn模块

statsmodels模块:用于构建统计模型,如线性回归、岭回归、逻辑回归、主成分分析等

scipy模块:专用于统计中的各种假设检验,如卡方检验、相关系数检验、正态性检验、t检验、F检验等

sklearn模块:专用于机器学习,包含了常规的数据挖掘算法,如决策树、森林树、提升树、贝叶斯、K近邻、SVM、GBDT、Kmeans等

数据分析和挖掘推荐的入门方式是?小公司如何利用数据分析和挖掘?

关于数据分析与挖掘的入门方式是先实现代码和Python语法的落地(前期也需要你了解一些统计学知识、数学知识等),这个过程需要

你多阅读相关的数据和查阅社区、论坛。然后你在代码落地的过程中一定会对算法中的参数或结果产生疑问,此时再去查看统计学和数据

挖掘方面的理论知识。这样就形成了问题为导向的学习方法,如果将入门顺序搞反了,可能在硬着头皮研究理论算法的过程中就打退堂鼓

了。

对于小公司来说,你得清楚的知道自己的痛点是什么,这些痛点是否能够体现在数据上,公司内部的交易数据、营销数据、仓储数据等是

否比较齐全。在这些数据的基础上搭建核心KPI作为每日或每周的经营健康度衡量,数据分析侧重于历史的描述,数据挖掘则侧重于未来

的预测。

差异在于对数据的敏感度和对数据的个性化理解。换句话说,就是懂分析的人能够从数据中看出破绽,解决问题,甚至用数据创造价值;

不懂分析的人,做不到这些,更多的是描述数据。

更多技术请关注python视频教程。

数据集成就是间来源于多个不同数据源的数据合并存放在一个一致的数据存储(比如数据仓库)中的过程。

不同数据源的数据之间可能会有不匹配或属性重复,所以要考虑实体识别问题和属性冗余问题。

是指从不同数据源识别出现实世界的实体,它的任务是统一不同源数据的矛盾之处。

常见形式有:同名异义,异名同义,单位不统一等。

实体识别问题就是检测和解决这些冲突。

数据冗余,比如:同一属性出现多次,同一属性命名不一致导致重复等。

冗余属性要先检测,再删除掉。冗余属性用相关性分析也能判断出来。

参考资料:

《Python数据分析和挖掘实战》张良均等

python数据挖掘(data mining,简称DM),是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信息和知识的过程。数据分析通常是直接从数据库取出已有信息,进行一些统计、可视化、文字结论等,最后可能生成一份研究报告性质的东西,以此来辅助决策。数据挖掘不是简单的认为推测就可以,它往往需要针对大量数据,进行大规模运算,才能得到一些统计学规律。

这里可以使用CDA一站式数据分析平台,融合了数据源适配、ETL数据处理、数据建模、数据分析、数据填报、工作流、门户、移动应用等核心功能。其中数据分析模块支持报表分析、敏捷看板、即席报告、幻灯片、酷屏、数据填报、数据挖掘等多种分析手段对数据进行分析、展现、应用。帮助企业发现潜在的信息,挖掘数据的潜在价值。

如果你对于Python学数据挖掘感兴趣的话,推荐CDA数据分析师的课程。课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。真正理解商业思维,项目思维,能够遇到问题解决问题;要求学生在使用算法解决微观根因分析、预测分析的问题上,根据业务场景来综合判断,洞察数据规律,使用正确的数据清洗与特征工程方法,综合使用统计分析方法、统计模型、运筹学、机器学习、文本挖掘算法,而非单一的机器学习算法。点击预约免费试听课。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12169339.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存