MFCC参数的提取包括以下稿族氏几个步骤:
预滤波(低通):前端带宽为300-3400Hz的抗混叠滤波器。
A/D变换:采样频率,线性量化精度。
预加穗侍重:通过一个一阶有限激励响应高通滤波器,使信号的频谱变得平坦,不易受到有限字长效应的影响。
分帧:根据语音的短时平稳特性,语音可以以帧为单位进行处理,实验中选取的语音帧长为32ms,帧叠为16ms。
加窗:采用哈明窗对一帧语音加窗,以减小吉布斯效应的影响。
快速傅立叶变换(Fast Fourier Transformation, FFT):将时域信号变换成为信号的功率谱。
三角窗滤波:用一组Mel频标上线性分布的三角窗滤波器(共键散24个三角窗滤波器),对信号的功率谱滤波,每一个三角窗滤波器覆盖的范围都近似于人耳的一个临界带宽,以此来模拟人耳的掩蔽效应。
求对数:三角窗滤波器组的输出求取对数,可以得到近似于同态变换的结果。
离散余弦变换(Discrete Cosine Transformation, DCT):去除各维信号之间的相关性,将信号映射到低维空间。
谱加权:由于倒谱的低阶参数易受说话人特性、信道特性等的影响,而高阶参数的分辨能力比较低,所以需要进行谱加权,抑制其低阶和高阶参数。
倒谱均值减(Cepstrum Mean Subtraction, CMS):CMS可以有效地减小语音输入信道对特征参数的影响。
差分参数:大量实验表明,在语音特征中加入表征语音动态特性的差分参数,能够提高系统的识别性能。可用到了MFCC参数的一阶差分参数和二阶差分参数。
采样前的低通滤波,主要是消除采样时的频谱混叠。由硬件完成。
预加重主要是提高高频的频谱分量。软件,硬件都可以完成。
预加重前,也可以用高通滤波器,消除低频噪音。
如果计算mfcc是有了预加重。之前的预加重就不要做。
采样前的硬件低通滤波是一定要做的。
计算mfcc时的滤波,看起的作用是什么?如果是进一步消除噪音,那就必须做。
所谓预处理是指在枯败桐进行编译的第一遍扫描(词法扫描和语法分析)之前所作的工作。预处理是c语言的一个重要功能,它由预枯扰处理程序负责完成。当对一个源文件进行编译时,
系统把自动引用预处理程序对源程序中的预处理部分作处理,
处理完毕自动进入对源程序的编译。
c语言提供了多种预处理功能,如宏定义、文件包含、
条件编译等。合理地使用预处理功能编写的程序便于阅读、修改、
移没坦植和调试,也有利于模块化程序设计。
语音识别的基本过程 根据实际中的应用不同,语音识别系统可以分为:特定人与非特定人的识别、独立词与连续词的识别、小词汇量与大词汇量以及无限词汇量的识别。但无论那种语音识别系统,其基本原理和处理方法都大体类似纯蠢。语嫌裤森音识别过程主要包括语音信号的预处理、特征提取、模式匹配几个部分。预处理包括预滤波、采样和量化、加窗、端点检测、预加重等过程。语音信号识别最重要的一环就是特征参数提取。提取的特征参数芹亩必须满足以下的要求:(1)提取的特征参数能有效地代表语音特征,具有很好的区分性; (2)各阶参数之间有良好的独立性;(3)特征参数要计算方便,最好有高效的算法,以保证语音识别的实时实现。在训练阶段,将特征参数进行一定的处理后,为每个词条建立一个模型,保存为模板库。在识别阶段,语音信号经过相同的通道得到语音特征参数,生成测试模板,与参考模板进行匹配,将匹配分数最高的参考模板作为识别结果。同时,还可以在很多先验知识的帮助下,提高识别的准确率。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)