【 *** 作系统】01--存储器的层次结构

【 *** 作系统】01--存储器的层次结构,第1张

*** 作系统存储器,如何对存储器进行有效的管理,直接影响着存储器的利用率和系统性能。

1、存储器的层次结构

2、程序的装入和链接

3、连续分配存储管理方式

4、分页存储管理方式

5、分段存储管理方式

内部碎片和外部碎片

逻辑地址和物理地址

内存分配策略

分页的地址变换,页表的使用

分页和分段的优缺点

1、存储的层次结构

这个图不怎么看的清,总体是三个部分:存储器的层次结构、程序的装入和链接、连续分配存储管理方式

====================

(1)内存分配——为每个进程分配一定的内存空间

(2)地址映射——把程序中所用的相对地址转换成内存的物理地址

(3)内存保护——检查地址的合法性,防止越界访问

(4)内存扩充——解决“求大于供”的问题,采用虚拟存储技术

内存分配

内存分配的主要任务是:为每一道程序分配内存空间,使它们“各得其所”;当程序撤消时,则收回它占用的内存空间。分配时注意提高存储器的利用率。

地址映射

目标程序所访问的地址是逻辑地址集合的地址空间,而内存空间是内存中物理地址的集合,在多道程序环境下,这两者是不一致的,因此,存储管理必须提供地址映射功能,用于把程序地址空间中的逻辑地址转换为内存空间中对应的物理地址。

内存保护

内存保护的任务是确保每道程序都在自己的内存空间运行,互不干扰。保护系统程序区不被用户侵犯(有意或无意的),不允许用户程序读写不属于自己地址空间的数据(系统区地址空间,其他用户程序的地址空间)。

内存扩充

内存扩充的任务是从逻辑上来扩充内存容量,使用户认为系统所拥有的内存空间远比其实际的内存空间(硬件RAM)大的多。

【缓存都在其使用的工具之前,目的是为了减少访问次数】

2.1 主存储器

主存储器是计算机系统中的一个主要部件,用于保存进程运行时的程序和数据,CPU的控制部件只能从主存储器中取得指令和数据,数据能够从主存储器中读取并将他们装入到寄存器中,或者从寄存器存入到主存储器,CPU与外围设备交换的信息一般也依托于主存储器地址空间。但是,主存储器的访问速度远低宽神于CPU执行指令的速度,于是引入了寄存机和告诉缓冲。

2.2 寄存器

寄存器访问速度最快,能与CPU协调工作,价格昂贵,容量不大,寄存器用于加速存储器的访问速度,如用寄存器存放 *** 作数,或用作地址寄存器加快地址转换速度等。

2.3 高速缓存

高速缓存容量大于或远大于寄存器,但小于内存,访问速度高于主内存器,根据程序局部性原理,将主存中一些经常访问的信息存放在高速缓存中, 减少访问主存储器的次数 ,可大幅度提高程序执行速度。通常,进程的程序和数据存放在主存,每当使用时,被临时复制到高速缓存中,当CPU访问一组特定信息时,首先检查它是否在高速缓存中,如果已存在,则直接取出使用,否则,从主存中读取信息。有的计算机系统设置了两级或多级高速缓存,一级缓存速度最高,容量小,二级缓存容量稍大,速度稍慢。

2.4 磁盘缓存

磁盘的IO速度远低于对主存的访问速度,因此将频繁使用的一部分磁盘数据和信息暂时存放在磁盘缓存中, 可减少访问磁盘的次数, 磁盘缓存本身并不是一种实际存在的存储介质,它依托于固定磁盘,提供对主存储器空间的扩充,即利用主存中的存储空间,来暂存从磁盘中读出或写入的信息,主存可以看做是辅存的高速缓存,因为,辅存中的数据必须复制到主存方能使用,反之,数据也必须先存在主存中,才能输出到辅存。

主存储器简称 主存或内存 , 用于保存程序运行时的指令和数据.

寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和 地址 .

通常, 处理机从指存中读出数据放入指令寄存器, 这一时间段我们称之为取指慎迅亏周期处理机从数存中读取数据放入数据寄存昌拦器, 再流入运算器, 这一时间段我们称之为执行周期.

高速缓存和磁盘缓存:

高速缓冲存储器是介于寄存器和存储器之间的存储器, 主要用于备份主存中较常用的数据, 用来减少处理机对主存储器的访问次数, 提高运行效率.

磁盘缓存主要用于暂时存放频繁使用的一部分磁盘数据和信息, 以减少访问磁盘的次数.

在 *** 作系统中,一个进程就是处于执行期的程序(当然包括系统资源),实际上正在执行的程序代码的活标本。那么进程的逻辑地址空间是如何划分的呢?

图1做了简单的说明(Linux系统下的):

图一

左边的是UNIX/LINUX系统的执行磨茄文件,右边是对应进程逻辑地址空间的划分情况。

一般认为在c中分为这几个存储区:    1. 栈 --有编译器自动分配释放     2. 堆 -- 一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收     3. 全局区(静态区) -- 全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。程序结束释放。     4. 另外还有一个专门放常量的地方。程序结束释放。    在函数体中定义的变量通常是瞎森察在栈上,用malloc, calloc, realloc等分配内存的函数分配得到的就是在堆上。在所有函数体外定义的是全局量,加了static修饰符后不管在哪里都存放在全局区(静态区),在所有函数体外定义的static变量表示在该文件中有效,不能extern到别的文件用,在函数体内定义的static表示只在该函数体内有效。另外,函数中的"adgfdf"这样的字符串存放在常量区。 比如:代码:

int a = 0//全局初始化区

char *p1//全局未初始化区

main() {

int b//栈

char s[] = "abc"//栈

char *p2//栈

char *p3 = "123456"//123456\0在常量区,p3在栈上。

static int c = 0; //全局(静态)初始化区

p1 = (char *)malloc(10)

p2 = (char *)malloc(20)     //分配得来得10和20字节的区域就在堆区。

strcpy(p1, "123456")     //123456\0放在常量区,编译器可能会将它与p3所指向           的"123456"优化成一块。

}

还有就是函数调用时会在栈上有一系列的保留现场及传递参数的 *** 作。     栈的空间大小有限定,vc的缺省是2M。栈不够用的情况一般是程序中分配了大量数组和递归函数层次太深。有一点必须知道,当一个函数调用完返回后它会释放该函数中所有的栈空间。栈是由编译器自动管理的,不用你 *** 心。     堆是动态分配内存的,并且你可以分配使用很大的内存。但是用不好会产生内存泄漏。并且频繁地malloc和free会产生内存碎片(有点类似磁盘碎片),因为c分配动态内存时是寻找匹配的内存的。而用栈则不会产生碎片。     在栈上存取数据比通过指针在堆上存取数据快些。     一般大家说的堆栈和栈是一样的,就是栈(stack),而说堆时才是堆heap. 栈是先入后出的,一般是由高地址向低地址生长。

堆(heap)和堆栈(stack)的区别

2.1申请方式stack:由系统自动分配。 例如,声明在函数中一个局部变量 int b系统自动在栈中为b开辟空间heap:需要程序员自己申请,并指明大小,在c中malloc函数

如p1 = (char *)malloc(10)

在C++中用new运算符

如p2 = (char *)malloc(10)

但是注意p1、p2本身是在栈中的。

2.2 申请后系统的响应栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。堆:首先应该知道 *** 作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。

2.3

2.4申请效率的比较:栈由系统自动分配,速度较快。但程序员是无法控制的。堆是由new分配的内存,一般速度比较慢,而且容易产生内春慧存碎片,不过用起来最方便.另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。

2.5堆和栈中的存储内容栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

2.6存取效率的比较

char s1[] = "aaaaaaaaaaaaaaa"

char *s2 = "bbbbbbbbbbbbbbbbb"

aaaaaaaaaaa是在运行时刻赋值的;

而bbbbbbbbbbb是在编译时就确定的;

但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。

比如:#include <...>

void main(){

char a = 1

char c[] = "1234567890"

char *p ="1234567890"

a = c[1]

a = p[1]

return

}

对应的汇编代码

10: a = c[1]

00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]

0040106A 88 4D FC mov byte ptr [ebp-4],cl

11: a = p[1]

0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]

00401070 8A 42 01 mov al,byte ptr [edx+1]

00401073 88 45 FC mov byte ptr [ebp-4],al

第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。

2.7小结:堆和栈的区别可以用如下的比喻来看出:使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。堆和栈的区别主要分: *** 作系统方面的堆和栈,如上面说的那些,不多说了。还有就是数据结构方面的堆和栈,这些都是不同的概念。这里的堆实际上指的就是(满足堆性质的)优先队列的一种数据结构,第1个元素有最高的优先权;栈实际上就是满足先进后出的性质的数学或数据结构。虽然堆栈,堆栈的说法是连起来叫,但是他们还是有很大区别的,连着叫只是由于历史的原因。

申请大小的限制栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。一、预备知识—程序的内存分配一个由c/C++编译的程序占用的内存分为以下几个部分

1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其 *** 作方式类似于数据结构中的栈。2、堆区(heap)— 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。3、全局区(静态区)(static)—全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。 - 程序结束后有系统释放4、文字常量区 —常量字符串就是放在这里的。 程序结束后由系统释放5、程序代码区(text)—存放函数体的二进制代码。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12258855.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-24
下一篇 2023-05-24

发表评论

登录后才能评论

评论列表(0条)

保存