层的槐判人工神经网络和训练它的方法。一层神经网络会把大量矩阵数字作为输入,通过非线性激活方法取权重,再产生另一个数据集合作为输出。这就卖悔像生物神经大脑的工作中明正机理一样,通过合适的矩阵数量,多层组织链接一起,形成神经网络“大脑”进行精准复杂的处理,就像人们识别物体标注图片一样。
主要包括4个部分:
1. 走棋网络(Policy Network),给定当前局面,预测/采样下一步的走棋。
2. 快速走子(Fast rollout),目标和1一样,但在适当牺牲走棋质量的条件下,速度要比1快1000倍。
3. 估值网络(Value Network),给定当前局面,估计是白胜还是黑胜。
4. 蒙特卡罗树搜索(Monte Carlo Tree Search,MCTS),把以上这三个部分连起来,形成一个完整的系统。
阿尔法围棋(AlphaGo)是通过两个不同神经网络“大脑”合作来改进下棋。这些大脑是多层神经网络跟那些Google图片搜索引擎识别图片在结构上是相似的。它们从多层启发式二维过滤器开始,去处理围棋棋盘的定位,就像图片分类器网络处理图片一样。经过过滤,13 个完全连接的神经网络层产生对它们看到的局面判断。这些层能够做分类和逻辑推理。
第一个战胜围棋世界冠军的人工智能程序是阿尔法狗。在韩国首尔举行的2016围棋人机大战中,阿尔法狗战胜了韩国名手李世石。
AlphaGo程序是美国谷歌公司旗下DeepMind团队开发的一款人机对弈的围棋程序,被中国棋迷们戏称为阿尔法狗。游戏是人工智能最初开发的主要阵地之一,比如博弈游戏就要求人工智能更聪明、更灵活,用更接近人类的思考方式解决问题。
扩展资料:
AlphaGo通过蒙搜高特卡洛树搜索算法和两个深度神经网络合作来完成下棋。在与李世石对阵之前,谷歌首先用人类对弈的近3000万种走法来训练“阿尔法狗”的神经网络,让它学宴培会预测人类专业棋手怎么落子。
然后更进一步,让晌漏唯AlphaGo自己跟自己下棋,从而又产生规模庞大的全新的棋谱。谷歌工程师曾宣称AlphaGo每天可以尝试百万量级的走法。
参考资料来源:人民网——“阿尔法狗”为什么厉害
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)