dsp复位后从哪里开始执行程序

dsp复位后从哪里开始执行程序,第1张

dsp复御前绝位后从InitBoot处镇姿开始执行程序。根据资料显示,当DSP复位后,会从复位向量0x3FFFC0处取得复位向悔键量,并跳转到InitBoot处开始执行,InitBoot会读GPIO84~87的值发现全为1判断为Flash启动方式。

DSP系统的硬件复位有三种方式是:上电复位,手动复位,软件复位。

硬件复位是复位启动以后需要重新加载加载FPGA、DSP等,也有可能在这个 *** 作之前初始化化CPU,加载系统文件等 *** 作,具体视需余袭要而定,然后初始化一些配置芯片;软复位则不需要进行FPGA、DSP等的加载,只是一些配置芯片的初始化。

用最少的字来解释:复位的概念:让赛跑运动员各自回到自己的起跑线。硬复位:用拖车把运动员给拖到起跑线。软复位:运动员自己走到起跑线。硬件复位是靠复位电路,而这种类型的复位从理论上讲只是起到了软件程序重启的作用,之前所有保存的数据是依然存在的,当软件重启后有可能会清掉或者不清这些数据。

1Blackfin系列DSP的特点P5-6

微信号结构、动态电源管理、高度并行的计算单元、高性能的数据地址产生器、极佳的代码密度、视频指令、分层结构的内存、集成的更多的外围设备、部分芯片配有专门的视频接口、调试/JTAG接口、性能发展进程。

2DSP芯片特点P3-4

普遍采用哈佛结构及改进的哈佛结构、流水线技术、针对滤波相关矩阵运算配有独立的乘法器和加法器、有多条总线、具有硬件接口逻辑和软件等待功能、带有多个DMA通道控制器、配有中断处理器定时控制器及实时时钟、低功耗、多机并行运行特性、丰富的外设接口。

改进哈弗结构的特点P3

将程序和数据存储在不同的存储空间中,程序存储器和数据存储器是两个相互独立的存储器,每个存储器独立编制独立访问。对应的是系统中设置了程序总线和数据总线,使数据的吞吐率提高了一倍。

动态电源管理允许电压闷谈和频率独立调整,使每一个单项任务所消耗的能量最少,使ADI的DSP性能竖罩兄提高4倍以上,功耗降低1/3.。使用外部电源管理控制器能够 *** 纵DSP内核的内部电压,从而更进一步减少功耗。

2.2内核数据算术单元的基本处理过程(对数据寄存器的使用过程):数据首先经过总线从内存读入数据寄存器,然后作为计算单元(ALU、MAC)的输入,计算结果存入数据寄存器,作后写入内存。ALU支持的特殊除法原语。

id) //将McBSP0初始化为SPI

{

SPSA0=SPCR10_SUB

SPSD0=0x00//接收端复位RRST=0

SPSA0=SPCR20_SUB

SPSD0=0x00//发送端复位XRST=0

SPSA0=SPCR10_SUB

SPSD0=0x1800 //CLKSTP=11

SPSA0=PCR0_SUB

SPSD0=0x0A08 //CLKXM=1(主设备)CLKXP=0

SPSA0=RCR10_SUB

SPSD0=0x00//RWDLEN1=000,接收包长度为8

SPSA0=RCR20_SUB

SPSD0=0x0001 //在BFSX信号上提供正确的建立时间

SPSA0=XCR10_SUB

SPSD0=0x00//XWDLEN1=000,发送包长度为8

SPSA0=XCR20_SUB

SPSD0=0x0001 //在BFSX信号上提供正确的建立时间

SPSA0=SRGR10_SUB

SPSD0=0x00FE //为采样率时钟定义分频因子

SPSA0=SRGR20_SUB

SPSD0=0x2000//CLKSM=1,从CPU得到时钟每个包传送时,激活BFSX信号

SPSA0=SPCR20_SUB

SPSD0=0x0063 //发送端脱离复位XRST=1

SPSA0=SPCR10_SUB

SPSD0|=0x0001 //接收端脱离复位RRST=1采样率产生器脱离复位GRST=1

delay(256) //为使McBSP逻辑稳定,需等待两个采样率产生器时钟周期

}

二.HDn作为片选信号时DSP与MCP2510通信过程

2.1读程序

2.1.1 MCP2510读取过程

在读 *** 作开始时,CS引脚将被置为低电平。随后读指令和8 位地址码(A7 至 A0)将被依次送入MCP2510 。在接收到读指令和地址码之后, MCP2510 指定地址寄存器中的数据将被移出通过SO引脚进行发送。每一数据字节移出后,器件内部的地址指针败戚毁将自动加一以指向下一地址。因此可以对下一个连续地址寄存器进行读 *** 作。通过该方法可以顺序读取任意个连续地址寄存器中的数据。通过拉高CS引脚电平可以结束读 *** 作。

编程时需注意问题:察备

1. SPI的读 *** 作是通过写 *** 作完成的。因此在DSP发送地址字节后,再发送一任意8位数据以产生接收时钟。

2. 在发送完任意8位数据后,DSP要有个延时,以等待写入DXR的数据从发送端移出,从而保证从2510输出的数据能够正确地被DSP接收。延时时间应大于采样率产生器输出的8个周期,最好长一些。

3. 由于SPI在发送数据的同时也在接收数据,所以在读取有效数据前(即在发送地址字节完毕后)要先清空接收缓冲器,否则可能会因为接收缓冲器溢出而无法接收有用的数据。可以通过读取3次(因为5402的McBSP有3个接收缓冲器)接收缓冲器DRR的值来实现清空缓冲器的 *** 作,读取之前要注意延时(等待地址字节发送完毕)。

2.1.2 示例程序

Uint16 ReadMCP2510(Uint16 Addr)

{

ChipSlctMCP2510(0) //打开片选

NOP

NOP

NOP

//发送读指令

DXR10=READ_MCP2510

SPSA0=SPCR20_SUB

while(!(SPSD0&0x02)) //等待上一个数据发送完毕

//发仔腔送地址

DXR10=Addr

SPSA0=SPCR20_SUB

while(!(SPSD0&0x02)) //等待上一个数据发送完毕

delay(1000) //延时,等待地址字节从DX移出

//读取数据

Addr=DRR10//读3次,清空缓冲器

Addr=DRR10

Addr=DRR10

DXR10=0 //发送任意数据,以便产生接收时钟

SPSA0=SPCR20_SUB

while(!(SPSD0&0x02)) //等待上一个数据发送完毕

delay(1000) //延时,等待数据接收

Addr=DRR10 //第一次为无效数据

ChipSlctMCP2510(3)

return Addr

}

2.2写程序

2.2.1 MCP2510写 *** 作

置CS引脚为低电平启动写 *** 作。 启动写指令后,地址码以及至少一个字节的数据被依次发送到MCP2510 。只要 CS 保持低电平,就可以对连续地址寄存器进行顺序写 *** 作。在SCK 引线上的上升沿,数据字节将从D0位开始依次被写入。如果CS 引脚在字节的8 位数据尚未发送完之前跳变到高电平,该字节的写 *** 作将被中止,而之前发送的字节已经写入。

编程时需注意问题:

1. 2510如何区分指令、地址和数据?由于读写指令、地址字节和数据字节的值可能会一样,所以有必要通过一定的时序来将他们区分开来。经实验验证,2510应该是通过片选信号CS来区分这几个数据的,当CS从高变低后,第一个字节就是指令,哪怕上次没有正确的读写,只要将CS置1,然后再置0,就会重新开始一个指令的周期。

2. 发送完数据字节后一定要有个延时来等待数据字节从DX引脚发送出去,之后才能将片选信号CS置1,否则无法正确写入数据。

2.2.2 示例程序

void WriteMCP2510(Uint16 Addr,Uint16 wrData)

{

ChipSlctMCP2510(0)

NOP

NOP

NOP

DXR10=WRITE_MCP2510

SPSA0=SPCR20_SUB

while(!(SPSD0&0x02)) //等待上一个数据发送完毕

DXR10=Addr

SPSA0=SPCR20_SUB

while(!(SPSD0&0x02)) //等待上一个数据发送完毕

DXR10=wrData

SPSA0=SPCR20_SUB

while(!(SPSD0&0x02)) //等待上一个数据发送完毕

delay(1000)

ChipSlctMCP2510(3)

}

三.BFSX作为片选信号时DSP与MCP2510通信过程

由于要完成2510的读写 *** 作需要3个字节,所以采用BFSX引脚作为MCP2510的片选信号时需要将XCR1和RCR1中的XWDLEN1、RWDLEN1设置为100(24bit)。

由于发送接收字长度设置为24位,因此在发送过程中需要用到DXR2和DRR2寄存器,在此需要注意的一点就是,DXR2(DRR2)必须要比DXR1(DRR1)先初始化或读取。其中DXR2(DRR2)中存放的是24bit的高8位,DXR1(DRR1)中存放的是24bit的低16位。发送时DXR2中的数据首先发送,接收时数据首先存放到DRR2中,因此DXR2(DRR2)中存放指令字节,DXR1(DRR1)中由高到低存放地址和数据。

下面为一个简单的调试程序。

Uint16 Debug24bit( )

{

int i

DXR20=0x02 //写指令

DXR10=0x0F01 //0F为CANCTRL地址,01为待写入的数据

delay(3000) //延时,等待发送完毕

i=DRR10//清空接收缓冲器

i=DRR10

i=DRR10

DXR20=0x03 //读指令

DXR10=0x0F00 //0F为CANCTRL地址,00用于读取数据

delay(3000) //延时,等待接收完毕

i=DRR10&0x00FF //DRR10低8位为有用数据

return i

}

四. 通信时MCP2510的初始化

4.1.1 确定时间份额

计算公式:

时间份额TQ定义为:TQ = 2*(BaudRate + 1)*TOSC

其中,BaudRate 是由 CNF1.BRP<5:0>表征的二进制数。

标称位时间 = TQ * (Sync_Seg + Prop_Seg +Phase_Seg1 + Phase_Seg2)

- 同步段(Sync_Seg)

- 传播时间段(Prop_Seg)

- 相位缓冲段1 (Phase_Seg1)

- 相位缓冲段2 (Phase_Seg2)

假设每个标称位包含N个时间份额TQ,则根据以上公式有:1/100K = N*TQ

现设定分频值BaudRate为1,根据以上公式计算,得出在4MHz时钟时,要实现100Kbps的波特率每个标称位包含个10时间份额TQ,在N满足要求的情况下BaudRate还可以设置为其他值,由MCP2510的手册得知的TQ数量N应在6-25之间。然而在满足这个前提下,应尽量使TQ的时间短一些,即一个标称位的时间份额数量N多一些,这样选择采样点位置时具有更好的分辨率。

4.1.2 设置时间段和采样点

在确定了一个标称位包含的时间份额数量后,还需要对各个时间段包含的时间份额进行分配,以确定采样点的位置。位的采样时刻取决于系统参数,通常应发生在位时间的60-70%处。同时,同步段的时间份额为1 TQ,TDELAY典型值为1-2TQ。因此时间份额分配如下:

(Sync_Seg + Prop_Seg +Phase_Seg1 + Phase_Seg2)=(1+2+3+4)

4.1.3 确定同步跳转宽度和采样次数

根据规则,SJW最大值 为4TQ。然而通常情况下,只有当不同节点的时钟发生不够精确或不稳定时,例如采用陶瓷谐振器时,才需要较大的SJW。一般情况下, SJW取1即可满足要求。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12312648.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-24
下一篇 2023-05-24

发表评论

登录后才能评论

评论列表(0条)

保存