1.决策树分类器提供一个属性集合,决策树通过在属性集的基础上作出液纳一系列的决策,将数据分类。这个过程类似于通过一个植物的特征来辨认植物。可以应用这样的分类器来判定某人的信用程度,比如,一个决策树可能会断定“一个有家、拥有一辆价值在1.5 万到2.3 万美元之间的轿车、有两个孩子的人”拥有良好的信用。决策树生成器从一个“训练集”中生成决策树。SGI 公司的数据挖掘工具MineSet 所提供的可视化工具使用树图来显示决策树分类器的结构,在图中,每一个决策用树的一个节点来表示。图形化的表示方法可以帮助用户理解分类算法,提供对数据的有价值的观察视角。生成的分类器可用于对数据的分类。2. 选择树分类器选择树分类器使用与决策树分类器相似的技术对数据进行分类。与决策树不同的是,选择树中包含特殊的选择节点,选择节点有多个分支。比如,在一棵用于区分汽车产地的选择树中的一个选择节点可以选择马力、汽缸数目或汽车重量等作为信息属性。在决策树中,一个节点一次最多可以选取一个属性作为考虑亮拍对象。在选择树中进行分类时,可以综合考虑多种情况。选择树通常比决策树更准确,但是也大得多。选择树生成器使用与决策树生成器生成决策树同样的算法从训练集中生成选择树。MineSet 的可视化工具使用选择树图来显示选择树。树图可以帮助用户理解分类器,发现哪个属性在闹键没决定标签属性值时更重要。同样可以用于对数据进行分类。3. 证据分类器证据分类器通过检查在给定一个属性的基础上某个特定的结果发生的可能性来对数据进行分类。比如,它可能作出判断,一个拥有一辆价值在1.5 万到2.3 万美元之间的轿车的人有70 %的可能是信用良好的,而有30 %的可能是信用很差。分类器在一个简单的概率模型的基础上,使用最大的概率值来对数据进行分类预测。与决策树分类器类似,生成器从训练集中生成证据分类器。MineSet 的可视化工具使用证据图来显示分类器,证据图由一系列描述不同的概率值的饼图组成。证据图可以帮助用户理解分类算法,提供对数据的深入洞察,帮助用户回答像“如果... 怎么样 一类的问题。同样可以用于对数据进行分类。
如果训练集很小,那么高偏差/低方差分类器(如朴素贝叶斯分类器)要优于低偏差/高方差分类器(如k近邻分类器),因为后者容易过拟合。然而,随着训练集的增大,低偏差/高方差分类器将开始胜出(它们具有较低的渐近误差),因为高偏差分类器不足以提供准确的模型。你也可以认为这是生成模型与判别模型的区别。
一些特定算法的优点
朴素贝叶斯的优点:超级简单,你只是在做一串计算。如果朴素贝叶斯(NB)条件独立性假设成立,相比于逻辑回归这类的判别模型,朴素贝叶斯分类器将收敛得更快,所以你只需要较小的训练集。而且,即使NB假设不成立,朴素贝叶斯分类器在实践方面仍然表现很好。如果想得到简单快捷的执行效果,这将是个好的选择。它的主要缺点是,不能学习特征之间的相互作用(比如,它不能学习出:虽然你喜欢布拉德·皮特和汤姆·克鲁斯的电影,但却不喜链陪欢他们一起合作的电影)。
逻辑回归的优点:有许多正则化模型的方法,你不需要像在朴素贝叶斯分类器中那样担心特征间的相互关联性。与决策树和支撑向量机不同,你还可以有一个很好的概率解释,并能容易地更新模型来吸收新数据(使用一个在线梯度下降方法)。如果你想要一个概率框架(比如,简单地调整分类阈值,说出什么时候是不太确定的,或者获得置信区间),或你期望未来接收更多想要快速并入模型中的训练数据,就选择逻辑回归。
决策树的优点:易于说明和解释(对某些人来说—我不确定自己是否属于这个阵营)。它们可以很容易地处理特征间的相互作用,并且是非参数化的,所以你不用担心异常值或者数据是否线性可分(比如,决策树可以很容易地某特征x的低端是类A,中间是类B,然后高端又是类A的情况)。一个缺点是,不支持在线耐渗学习,所以当有新样本时,你将不得不重建决策树。另一个缺点是,容易过拟合,但这也正是诸如随机森林(或提高树)之类的集成方法的切入点。另外,随机森林往往是很多分类问题的赢家(我相信通常略优于支持向量机),它们快速并且可扩展,同时你不须担心要像支持向量机那样调一堆参数,所以它们最近似乎相当受欢迎。
SVMs的优点:高准确率,为过拟合提供了好的理论保证,并且即使你的数据在基础特征空间线性不可分,只要选定一个恰当的核函数,它们仍然能够取得很好的分类效果。它们在超高维空间是常态的文本分类问题中尤其受欢迎。然而,它们内存消耗大,难于解释,运行和调参也有些烦人,因此,我认为随机森林正渐渐开始偷走它的“王冠”。
然而…
尽管如此,回忆一下,更好的数据往往打败更好的算法,设计好的特征大有裨益。并且,如果你有一个庞大数据集,这时你使用哪种分类算法在分棚亩蠢类性能方面可能并不要紧(所以,要基于速度和易用性选择算法)。
重申我上面说的,如果你真的关心准确率,一定要尝试各种各样的分类器,并通过交叉验证选择最好的一个。或者,从Netflix Prize(和Middle Earth)中吸取教训,只使用了一个集成方法进行选择。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)