摘要:鸡群算法 (Chicken Swarm Optimization,CSO) 是一种新颖的仿生学算法,充分继承群智能优化特点,创新采用灶带个体分类、协作优化,最大程度挖掘最优解,又能很好避免早熟现象。具有收敛快,寻优能力强的特点。
新型的仿生学算法—鸡群优化算法,它模拟群的等级制度和鸡群的群体活动行为。 在特殊的等级制度下鸡群中不同鸡种搜寻食物时存在着竞争。公鸡搜索食物能力强,适应值小;母鸡其次;小鸡搜索食物能力最弱,适应值最大。
为了简化,文中通过下列规则理想化鸡群算法:
因为不同的鸡种有不同的运动规律, 因亏辩扒此,以下 3 种个体的位置更新策略各不相同。
适应度好的公鸡能够在更大的范围内搜索食物,而且比适应度差的公鸡能够优先获得食物实现全局搜索,它的位置更新受随机选取的其他公鸡位置的影响,则更新策略见式(1)-(2)
式 (1)-(2) 中:第只公鸡位置的第 j 维的值表示为, 表示当前的迭代次数,表示服从期望值为0 ,方差值为 2 的正态分布随机数, 第只公鸡的适应度为,随机选取公鸡的适应度为, 分母中加上无穷小数,避免除数为零。
母鸡跟随伙伴公鸡搜索食物,位置更新受伙伴公鸡位置影响。由于母鸡的偷食行为,位置更新又与其它公鸡和母鸡有关系,则更新策略见式 (3)-(5) 。
式 (3)-(5) 中: Rand 是一个服从 [0,1] 均匀分布的随机数,该母鸡的伙伴公鸡的适应度值为, 表示其伙伴公鸡对其的影响因子,其他公鸡和母鸡中随机选取个体的适应度值为,为其他鸡对其的影响因子。
小鸡在其母亲周围搜寻食物,它的搜索能力最差,位置受到母亲公鸡的影响,则更新策略见式 (6) 。
式 (6) 中:母亲母鸡 位置的第 维数值为,,母亲母鸡的位置对小鸡位置的影响因子为 , 其为随机函数随机生成,取值范围一般为 (0,2) 。
步骤如下:
[1] MENG X , LIU Y , GAO X Z , et al. A new bio-inspired algorithm: chicken swarm optimization[J]. Lecture Notes in Computer Science ,2014 ,8794(1):86-94.
[2] 胡汉梅,李静雅,黄景光.基于鸡群算法的微网经济运行优化[J].高压电器,2017,53(01):119-125.
https://mianbaoduo.com/o/bread/aJWbmZk=
文献复现:基于模拟退火的改进鸡群优化算法(SAICSO)
[1]李振璧,王康,姜媛媛.基于模拟退火的改进鸡群优化算法[J].微电子学与计算机,2017,34(02):30-33+38.
文献复现:一种改进的鸡群算法(ICSO)
[1]孔飞,吴定会.一种改进的鸡群算法[J].江南大学学报(自然科学版),2015,14(06):681-688.
文献复现:全局优化的改进鸡群销昌算法(ECSO)
[1]韩斐斐,赵齐辉,杜兆宏,刘升.全局优化的改进鸡群算法[J].计算机应用研究,2019,36(08):2317-2319+2327.
[r,c] = find(R == max(R(:)))检索扒世R中最大元素所在的位陆颤置早此败(行标r和列标c)thetap = theta(c(1))theta()是自定义函数
%不知道你具体的问题纤迹是什么,下面是一个最基本的pso算法解决函数极值问题,如果是一些大型的问题,需要对速度、惯性常数、和自适应变异做进一步优化,希望对你有帮助function y = fun(x)
y=-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
%下面是主程序
%% 清空环境
clc
clear
%% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445
c2 = 1.49445
maxgen=200 % 进化次数
sizepop=20 %种群规模
Vmax=1%速度限制
Vmin=-1
popmax=5%种群限制
popmin=-5
%% 产生初始粒子和速度
for i=1:sizepop
%随机产生一个种群
pop(i,:)=5*rands(1,2) %初始种群
V(i,:)=rands(1,2) %初始化速度
%计算适应度
fitness(i)=fun(pop(i,:)) %染色体的适应码昌度
end
%找最好的染色体
[bestfitness bestindex]=min(fitness)
zbest=pop(bestindex,:) %全局最佳
gbest=pop %个体最佳
fitnessgbest=fitness %个体最佳适应度值
fitnesszbest=bestfitness %全局最佳适应度值
%% 迭代寻优
for i=1:maxgen
for j=1:sizepop
%速度更新
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:))
V(j,find(V(j,:)>Vmax))=Vmax
V(j,find(V(j,:)<Vmin))=Vmin
%种群更新
pop(j,:)=pop(j,:)+0.5*V(j,:)
pop(j,find(pop(j,:)>popmax))=popmax
pop(j,find(pop(j,:)<popmin))=popmin
%自适应变异(避免粒子群算法陷入局部最优)
if rand>0.8
k=ceil(2*rand)%ceil朝正无穷大方向取整
pop(j,k)=rand
end
%适应度值
fitness(j)=fun(pop(j,:))
%个体最优更新
if fitness(j) <fitnessgbest(j)
gbest(j,:) = pop(j,:)
fitnessgbest(j) = fitness(j)
end
%群体最优更新
if fitness(j) <fitnesszbest
zbest = pop(j,:)
fitnesszbest = fitness(j)
end
end
yy(i)=fitnesszbest
end
%% 结果分析
plot(yy)
title(['适应度曲线 ' '终止代数毁模并=' num2str(maxgen)])
xlabel('进化代数')ylabel('适应度')
以上回答你满意么?
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)