【1】 假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。
由满6向空5倒,剩1升,把这1升倒5里,然后6剩满,倒5里面,由于5里面有1升水,因此6只能向5倒4升水,然后将6剩余的2升,倒入空的5里面,再灌满6向5里倒3升,剩余3升。
【2】 周雯的妈妈是豫林水泥厂的化验员。一天,周雯来到化验室做作业。做完后做稿想出去玩。"等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?"爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到了。请你想想看,"小机灵"是怎样做的?
设杯子编号为ABCDEF,ABC为满,DEF为空,把B中的水倒进E中即可。
【3】 三个小伙子同时爱上了一个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手q进行一次决斗。小李的命中率是30%,小黄比他好些,命中率是50%,最出色的q手是小林,他从不失误,命中率是100%。由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:小李先开q,小黄第二,小林最后。然后这样循环,直到他们只剩下一个人。
那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?
小林在轮到自己且小黄没死的条件下必杀黄,再跟菜鸟李单挑。
所以黄在林没死的情况下必打林,否则自己必死。
小李经过计算比较(过程略),会决定自己纯大孝先打小林。
于是经计算,小李有873/2600≈33.6%的生机
小黄有109/260≈41.9%的生机
小林有24.5%的生机。
哦,这样,那小李的第一q会朝天仿段开,以后当然是打敌人,谁活着打谁
小黄一如既往先打林,小林还是先干掉黄,冤家路窄啊!
最后李,黄,林存活率约38:27:35
菜鸟活下来抱得美人归的几率大。
李先放一空q(如果合伙干中林,自己最吃亏)黄会选林打一q(如不打林,自己肯定先玩完了)林会选黄打一q(毕竟它命中率高)李黄对决0.3:0.280.4可能性李林对决0.3:0.60.6可能性成功率0.73
李和黄打林李黄对决0.3:0.40.7 0.4可能性李林对决0.3:0.7 0.6 0.70.7 0.6可能性成功率0.64
【4】 一间囚房里关押着两个犯人。每天监狱都会为这间囚房提供一罐汤,让这两个犯人自己来分。起初,这两个人经常会发生争执,因为他们总是有人认为对方的汤比自己的多。后来他们找到了一个两全其美的办法:一个人分汤,让另一个人先选。于是争端就这么解决了。可是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。必须寻找一个新的方法来维持他们之间的和平。该怎么办呢?按:心理问题,不是逻辑问题
是让甲分汤,分好后由乙和丙按任意顺序给自己挑汤,剩余一碗留给甲。这样乙和丙两人的总和肯定是他们两人可拿到的最大。然后将他们两人的汤混合之后再按两人的方法再次分汤。
【5】 在一张长方形的桌面上放了n个一样大小的圆形硬币。这些硬币中可能有一些不完全在桌面内,也可能有一些彼此重叠当再多放一个硬币而它的圆心在桌面内时,新放的硬币便必定与原先某些硬币重叠。请证明整个桌面可以用4n个硬币完全覆盖。
要想让新放的硬币不与原先的硬币重叠,两个硬币的圆心距必须大于直径。也就是说,对于桌面上任意一点,到最近的圆心的距离都小于2,所以,整个桌面可以用n个半径为2的硬币覆盖。
把桌面和硬币的尺度都缩小一倍,那么,长、宽各是原桌面一半的小桌面,就可以用n个半径为1的硬币覆盖。那么,把原来的桌子分割成相等的4块小桌子,那么每块小桌子都可以用n个半径为1的硬币覆盖,因此,整个桌面就可以用4n个半径为1的硬币覆盖。
【6】 一个球、一把长度大约是球的直径2/3长度的直尺.你怎样测出球的半径?方法很多,看看谁的比较巧妙
把球放在平面上,把直尺的一边卡在平面上,一边卡在球上,球与尺子的接触点到平面的距离就是球的半径.因为直尺长度约为直径的2/3>半径,所以能测量.
【7】 五个大小相同的一元人民币硬币。要求两两相接触,应该怎么摆?
底下放一个1,然后2 3放在1上面,另外的4 5竖起来放在1的上面。
【8】 猜牌问题S先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4黑桃J、8、4、2、7、3草花K、Q、5、4、6方块A、5。约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉P先生,把这张牌的花色告诉Q先生。这时,约翰教授问P先生和Q先生:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,S先生听到如下的对话:P先生:我不知道这张牌。Q先生:我知道你不知道这张牌。P先生:现在我知道这张牌了。Q先生:我也知道了。听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。请问:这张牌是什么牌? 方块5
【9】 一个教授逻辑学的教授,有三个学生,而且三个学生均非常聪明!一天教授给他们出了一个题,教授在每个人脑门上贴了一张纸条并告诉他们,每个人的纸条上都写了一个正整数,且某两个数的和等于第三个!(每个人可以看见另两个数,但看不见自己的)教授问第一个学生:你能猜出自己的数吗?回答:不能,问第二个,不能,第三个,不能,再问第一个,不能,第二个,不能,第三个:我猜出来了,是144!教授很满意的笑了。请问您能猜出另外两个人的数吗?
经过第一轮,说明任何两个数都是不同的。第二轮,前两个人没有猜出,说明任何一个数都不是其它数的两倍。现在有了以下几个条件:1.每个数大于02.两两不等3.任意一个数不是其他数的两倍。每个数字可能是另两个之和或之差,第三个人能猜出144,必然根据前面三个条件排除了其中的一种可能。假设:是两个数之差,即x-y=144。这时1(x,y>0)和2(x!=y)都满足,所以要否定x+y必然要使3不满足,即x+y=2y,解得x=y,不成立(不然第一轮就可猜出),所以不是两数之差。因此是两数之和,即x+y=144。同理,这时1,2都满足,必然要使3不满足,即x-y=2y,两方程联立,可得x=108,y=36。
这两轮猜的顺序其实分别为这样:第一轮(一号,二号),第二轮(三号,一号,二号)。这样分大家在每轮结束时获得的信息是相同的(即前面的三个条件)。
那么就假设我们是C,来看看C是怎么做出来的:C看到的是A的36和B的108,因为条件,两个数的和是第三个,那么自己要么是72要么是144(猜到这个是因为72的话,108就是36和72的和,144的话就是108和36的和。这样子这句话看不懂的举手):
假设自己(C)是72的话,那么B在第二回合的时候就可以看出来,下面是如果C是72,B的思路:这种情况下,B看到的就是A的36和C的72,那么他就可以猜自己,是36或者是108(猜到这个是因为36的话,36加36等于72,108的话就是36和108的和):
如果假设自己(B)头上是36,那么,C在第一回合的时候就可以看出来,下面是如果B是36,C的思路:这种情况下,C看到的就是A的36和B的36,那么他就可以猜自己,是72或者是0(这个不再解释了):
如果假设自己(C)头上是0,那么,A在第一回合的时候就可以看出来,下面是如果C是0,A的思路:这种情况下,A看到的就是B的36和C的0,那么他就可以猜自己,是36或者是36(这个不再解释了),那他可以一口报出自己头上的36。(然后是逆推逆推逆推),现在A在第一回合没报出自己的36,C(在B的想象中)就可以知道自己头上不是0,如果其他和B的想法一样(指B头上是36),那么C在第一回合就可以报出自己的72。现在C在第一回合没报出自己的36,B(在C的想象中)就可以知道自己头上不是36,如果其他和C的想法一样(指C头上是72),那么B在第二回合就可以报出自己的108。现在B在第二回合没报出自己的108,C就可以知道自己头上不是72,那么C头上的唯一可能就是144了。
史上最雷人的应聘者
【10】 某城市发生了一起汽车撞人逃跑事件,该城市只有两种颜色的车,蓝15%绿85%,事发时有一个人在现场看见了,他指证是蓝车,但是根据专家在现场分析,当时那种条件能看正确的可能性是80%那么,肇事的车是蓝车的概率到底是多少?
15% 80%/(85%×20%+15% 80%)
【11】 有一人有240公斤水,他想运往干旱地区赚钱。他每次最多携带60公斤,并且每前进一公里须耗水1公斤(均匀耗水)。假设水的价格在出发地为0,以后,与运输路程成正比,(即在10公里处为10元/公斤,在20公里处为20元/公斤......),又假设他必须安全返回,请问,他最多可赚多少钱?
f(x)=(60-2x)*x,当x=15时,有最大值450。
450×4
【12】 现在共有100匹马跟100块石头,马分3种,大型马中型马跟小型马。其中一匹大马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头。问需要多少匹大马,中型马跟小型马?(问题的关键是刚好必须是用完100匹马) 6种结果
【13】 1=5,2=15,3=215,4=2145那么5=?
因为1=5,所以5=1.
【14】 有2n个人排队进电影院,票价是50美分。在这2n个人当中,其中n个人只有50美分,另外n个人有1美元(纸票子)。愚蠢的电影院开始卖票时1分钱也没有。问:有多少种排队方法使得每当一个拥有1美元买票时,电影院都有50美分找钱
注:1美元=100美分拥有1美元的人,拥有的是纸币,没法破成2个50美分
本题可用递归算法,但时间复杂度为2的n次方,也可以用动态规划法,时间复杂度为n的平方,实现起来相对要简单得多,但最方便的就是直接运用公式:排队的种数=(2n)!/[n!(n+1)!]。
如果不考虑电影院能否找钱,那么一共有(2n)!/[n!n!]种排队方法(即从2n个人中取出n个人的组合数),对于每一种排队方法,如果他会导致电影院无法找钱,则称为不合格的,这种的排队方法有(2n)!/ (n-1)!(n+1)! 种,所以合格的排队种数就是(2n)!/[n!n!]- (2n)!/[(n-1)!(n+1)!] =(2n)!/[n!(n+1)!]。至于为什么不合格数是(2n)!/[(n-1)!(n+1)!],说起来太复杂,这里就不讲了。
【15】 一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。问他赚了多少?
2元
【16】 有一种体育竞赛共含M个项目,有运动员A,B,C参加,在每一项目中,第一,第二,第三名分别的X,Y,Z分,其中X,Y,Z为正整数且X>Y>Z。最后A得22分,B与C均得9分,B在百米赛中取得第一。求M的值,并问在跳高中谁得第二名。
因为ABC三人得分共40分,三名得分都为正整数且不等,所以前三名得分最少为6分,40=5 8=4 10=2 20=1 20,不难得出项目数只能是5.即M=5.
A得分为22分,共5项,所以每项第一名得分只能是5,故A应得4个一名一个二名.22=5*4+2,第二名得1分,又B百米得第一,所以A只能得这个第二.
B的5项共9分,其中百米第一5分,其它4项全是1分,9=5+1=1+1+1.即B除百米第一外全是第三,跳高第二必定是C所得.
【17】 前提:
1 有五栋五种颜色的房子
2 每一位房子的主人国籍都不同
3 这五个人每人只喝一种饮料,只抽一种牌子的香烟,只养一种宠物
4 没有人有相同的宠物,抽相同牌子的香烟,喝相同的饮料
提示:1 英国人住在红房子里
2 瑞典人养了一条狗
3 丹麦人喝茶
4 绿房子在白房子左边
5 绿房子主人喝咖啡
6 抽PALL MALL烟的人养了一只鸟
7 黄房子主人抽DUNHILL烟
8 住在中间那间房子的人喝牛奶
9 挪威人住第一间房子
10 抽混合烟的人住在养猫人的旁边
11 养马人住在抽DUNHILL烟的人旁边
12 抽BLUE MASTER烟的人喝啤酒
13 德国人抽PRINCE烟
14 挪威人住在蓝房子旁边
15 抽混合烟的人的邻居喝矿泉水
问题是:谁养鱼???
第一间是黄房子,挪威人住,喝矿泉水,抽DUNHILL香烟,养猫! f/ [% a: \6 L! J. Q9 x第二间是蓝房子,丹麦人住,喝茶,抽混合烟,养马+ o8 _0 S) L8 i' E' u第三间是红房子,英国人住,喝牛奶,抽PALL MALL烟,养鸟/ N9 o/ n2 M# U" c第四间是绿房子,德国人住,喝咖啡,抽PRINCE烟,养猫、马、鸟、狗以外的宠物7 P5 l) G, G, |C, {7 V第五间是白房子,瑞典人住,喝啤酒,抽BLUE MASTER烟,养狗。
【18】 5个人来自不同地方,住不同房子,养不同动物,吸不同牌子香烟,喝不同饮料,喜欢不同食物。根据以下线索确定谁是养猫的人。
10.养鱼的人住在最右边的房子里。
11.吸万宝路香烟的人住在吸希尔顿香烟的人和吸“555”香烟的人的中间(紧邻)
12.红房子的人爱喝茶。
13.爱喝葡萄酒的人住在爱吃豆腐的人的右边隔壁。
14.吸红塔山香烟的人既不住在吸健牌香烟的人的隔壁,也不与来自上海的人相邻。
15.来自上海的人住在左数第二间房子里。
16.爱喝矿泉水的人住在最中间的房子里。
17.爱吃面条的人也爱喝葡萄酒。
18.吸“555”香烟的人比吸希尔顿香烟的人住的靠右
第一间是兰房子,住北京人,养马,抽健牌香烟,喝茅台,吃豆腐2 G7 x% z0 vC第二间是绿房子,住上海人,养狗,抽希尔顿,喝葡萄酒,吃面条% C2 k4 o8 t" p6 L* x第三间是黄房子,住香港人,养蛇,抽万宝路,喝矿泉水,吃牛肉&N" S% x# o3 ag第四间是红房子,住天津人,抽555,喝茶,吃比萨7 \5 s. J# d, Q/ N% N' O# ]第五间是白房子,住成都人,养鱼,抽红塔山,喝啤酒,吃鸡。
【19】 斗地主附残局
地主手中牌2、K、Q、J、10、9、8、8、6、6、5、5、3、3、3、3、7、7、7、7
长工甲手中牌大王、小王、2、A、K、Q、J、10、Q、J、10、9、8、5、5、4、4
长工乙手中牌2、2、A、A、A、K、K、Q、J、10、9、9、8、6、6、4、4
三家都是明手,互知底牌。要求是:在三家都不打错牌的情况下,地主必须要么输要么赢。问:哪方会赢?
无解地主怎么出都会输
【20】 一楼到十楼的每层电梯门口都放着一颗钻石,钻石大小不一。你乘坐电梯从一楼到十楼,每层楼电梯门都会打开一次,只能拿一次钻石,问怎样才能拿到最大的一颗?
先拿下第一楼的钻石,然后在每一楼把手中的钻石与那一楼的钻石相比较,如果那一楼的钻石比手中的钻石大的话那就把手中的钻石换成那一层的钻石。
01、您所熟悉的测试用例设计方法都有哪些?请分别以具体的例子来说明这些方法在测试用例设计工作中的应用。
02、您认为做好测试用例设计工作的关键是什么?
03、您在从事性能测试工作时,是否使用过一些测试工具岩态念?如果有,请试述该工具的工作原理,并以一个具体的工作中的例子描述该工具是如何在实际工作中应用的。
04、您认为性能测试工作的目的是什么?做好性能测试工作的关键是什么?
05、在您以往的工作中,一条软件缺陷(或者叫Bug)记录都包含了哪些内容?如何提交高质量的软件缺陷(Bug)记录?
06、你对测试最大的兴趣在哪里?为什么?
07、测试活动中,如果发现需要文档不完善或者不准确,怎么处理?
08、你认为做好测试计划工作的关键是什么?
09、软件配置管理工作开展的情况和认识?
10、你觉得软件测试通过的标准应该是什么样的?
11、软件测试的文档测试应当贯穿于软件生命周期的全过程,其中用户文档是文档测试的重点。那么软件系统的用户文档包括哪些?
12、简述软件系统中用户文档的测试要点?
13、什么是系统瓶颈?
14、没有产品说明书和需求文档地情况下能够进行黑盒测试吗?
15、为什么尽量不要让时间富裕的员工去做一些测试?
16、完全测试程序是可能的吗?
18、软件测试的风险主要体现在哪里?
19、所有的软件缺陷都能修复吗?所有的软件缺陷都要修复吗?
20、开发人员老是犯一些低级错误怎么解决?
21、您在以往的测试工作中都曾经具体从事过哪些工作?其中最擅长哪部分工作?
22、开发人员说不是bug时,你如何应付?
23、软件测试项目从什么时候开始为什么?
24、你能不能说下你的3-5年的职业规划?
25、功能测试用例需要详细到什么程度才是合格的?
26、一个缺陷测试报告的组成?
27、测试用例通常包括哪些内容?
28、你都用什么测试方法?
29、软件的评审一般由哪些人员参加?其目的是什么?
30、什么是软件测试,软件测试的目的?
31、什么是兼容性测试?
32、什么是软粗困件测试?
33、软件测试的对象有哪些?
34、当测试过程发生错误时,有哪几种解决办法?
35、怎么才能够全面的测试到每一个点?
36、开发与测试的关系?
37、测试活动中统计了哪些数据?
38、进行测试时产生了哪些文档或记录?
39、怎样做好测试计划?
40、测试用例如何设计的?
41、简单概述缺陷报告,并说明包括哪些项?
42、什么是bug?
43、开发人员修复缺陷后,如何保证不影响其他功能?
44、什么时候功能测试?
45、请问功能测试和性能测试的区别是什么?
46、为什么选择测试这行?
47、什么是软件缺陷?
48、什么黑盒测试?黑盒测试方法都包括哪些?
49、什么白盒测试?白盒测试方法包括哪些?
50、软件测试策略都包含闭历哪些?
51、什么是单元测试?
52、什么是集成测试?
53、什么是系统测试?
54、什么是验收测试?
55、什么是自动化测试?
56、什么是 Alpha 和 Beta 测试?
57、什么是功能测试?
58、什么是性能测试?
59、什么是冒烟测试?
60、什么是随机测试?
61、什么是动态测试和静态测试?
62、什么是测试用例?
如下四类笔试题内容是软件测试最常考的精华题,大家敬请收藏!一、判断正误题
1、测试是证明软件正确的方法。(×)
2、测试中应该对有效和无效、期望和不期望的输入都要测试。(√)
3、对于连锁型分支结构,若有n个判定语句,则有2n条路径。(√)
4、GOTO语句概念简单,使用方便,在某些情况下,保留GOTO语句反能使写出的程序更加简洁。(√)
5、黑盒测试也称为结构测试。(×)
6、测试是调试的一个部分 (×)
7、程序中隐藏错误的概率与其已发现的错误数成正比(√)
8、测试的目的是发现软件中的错误。(√)
二、不定项选择题
1、下面的哪一项测试步骤中需要进行局部数据结构测试:( A )
A、单元测试
B、集成测试
C、确认测试
D、系统测试
2、从是否需要执行被测软件的角度,软件测试技术可划分的类型是:( AC )。
A、静态测试
B、黑盒测试
C、动态测试
D、白盒测试
3、从测试阶段角度,测试结束的正确顺序是:( B )
A、单元测试、集成测试、系统测试、确认测试
B、单元测试、系统测试、集成测试、确认测试
C、确认测试、集成测试、系统测试、单元测试
D、确认测试、系统测试、集成测试、单元测试
4、软件的六大质量特性包括:( A )
A、功能性、可靠性、可用性、效率、可维护、可移植
B、功能性、可靠性、可用性、效率、稳定性、可移植
C、功能性、可靠性、可扩展性、效率、稳定性、可移植
D、功能性、可靠性、兼容性、效率、稳定性、可移植
5、在GB/T17544中,软件包质量要求包括三部分,即产品描述要求、( A )、程 序和数据要求。
A、用户文档要求
B、系统功能要求
C、设计要求说明
D、软件配置要求
6、( )可以作为软件测试结束的标志。
A、使用了特定的测试用例
B、错误强度曲线下降到预定的水平
C、查出了预定数目的错误
D、按照测试计划中所规定的时间进行了测试
7、导致软件缺陷的原因有很多,A—D是可能的原因,其中最主要的原因包括( ABCD )。
A、软件需求说明书编写的不全面,不完整,不准确,而且经常更改
B、软件设计说明书
C、软件 *** 作人员的水平
D、开发人员不能很好的理解需求说明书和沟通不足 12
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)