数控车床加工零件个数如何清零?

数控车床加工零件个数如何清零?,第1张

数控车床加工零件个数清零的方法是:使用宏程序计数进入宏变量画面,将540#变量改为"0"即可将加工零件个数清零。

数控车床能够按照事先让陵编制好的加工槐判程序,自动地对被加工零件进行加工。它把零件的加工工艺路线、工艺参数、刀具的运动轨迹、位移量、切削参数以及辅助功能。

按照数控车床规定的指令代码及程序格式编写成加工程序单,再把这程序单中的内容记录在控制介质上,然后输入到数控车床的数控装置中,从而指挥车床加工零件。

扩展资料:

数控车床的特点:

1、加工精度高,具有稳定的加工质量;可进行多坐标的联动,能加工形状复杂的零件;加工零件改变时,一般铅滑改只需要更改数控程序,可节省生产准备时间。

2、机床本身的精度高、刚性大,可选择有利的加工用量,生产率高;机床自动化程度高,可以减轻劳动强度。

3、对 *** 作人员的素质要求较高,对维修人员的技术要求更高。

参考资料来源:百度百科—数控车床

现行的数控程序的编制中,主要有两种编程方式:手工编程和自动编程。虽然自动编程运用得越来越广泛,但手工编程在某些领域也是不可或缺的一种编程手段。手工编程至少在此以下几方面有着自己的优势:其一,熟练的程序员编制的手工程序加工效率高于自动编程;其二,熟悉手工编程,对自动程序的修改是不无裨益的;其三,自动编程的所敲定的走刀路线限制了其加工工艺,通过手工编程能够得到弥补。

在手工编程过程中,用户宏程序的编制,能极大提高程序编制的效率,因此,我们在数控教学及训练过程中,必须把用户宏程序的编制作为我们数控教学的重要内容之一。从历年全国数控大赛的试题中也不难发现,用户宏程序的编制是运用得极其频繁的。但是,我们很难在目前的教材中找到完整的宏程序的编写的方法及思路。为此,笔者提出了一整套设计用户宏程序的方法,通过利用流程图来设计用户宏程序,提高了编程的效率。

二、用户宏程序简介

用户宏程序有A、B两种,A类宏程序用G65指令编写,其格式如下:

G65 Hm P#i Q#j R#k

其中,m—01~99表示运算命令或转移命令功能;

#i—存入运算结果的变量名;

#j—进行运算的变量名1,可以是常数,常数直接表示,不带#;

#k—进行运算的变量名2,也可以是常数。

意义, #i=#j○#k,表示运算符号,常用意义如表1

表1

G代码

H代码

功能

定义

G65

H01

赋值

#i=#j

G65

H02

加法

#i=#j+#k

G65

H03

减法

#i=#j-#k

G65

H04

乘法

#i=#j×#k

G65

H05

除法

#i=#j÷#k

G65

H80

无条件转移

转姿大向N

G65

H81

条件转移1

IF #j=#k,GOTO N

G65

H82

条件转移2

IF #j≠#k,GOTO N

G65

H83

条件转移3

IF #j>#k,GOTO N

G65

H84

条件转移4

IF #j<#k,GOTO N

G65

H85

条件转移5

IF #j≥#k,GOTO N

G65

H86

条件转移6

IF #j≤#k,GOTO N

G65

H99

产生P/S报警

产生500+1号P/S报警

除此以外,G65指令还可以实现逻辑运算、开平方、取绝对值、三角运算及复合运算等,相关指令见有关书籍,这里不一一介绍。需要指出的是,不同的数控系统,其功能的多少也不一样,用户可参考有关系统的说明书。

B类宏程序由控制语句,调用语句所组成。宏程序可以与主程序做在一起,也可以单独做成一个子程序,然后用G65指令调用。调用方法如下:

G65 P(程序号)〈引数赋值〉或G65 P(程序号) L(循环次数)〈引数赋值〉

所谓引数赋值,是指用A、B、C、D等地址给变量#1、#2、#3、#4等赋值。

B类宏程序的控制指令有三类,与C语言等高级程序设计语言的控制指令很类似。一类是IF语句,格式为:

IF[条件式]GOTO n (n即迹慎竖顺序号)

条件式成立时,从顺序号为n的程序段往下执行,条件式不成立时,执行下一下程序段;第二类是WHILE语句,格式为:

WHILE[条件式] DO m

END m

条件式成立时,从DO m的程序段到END m的程序段重复执行,条件式不成立时,则从END m的下一程序段执行。

第三类是无条件转移指令,格式为:GOTO n。

三、运用流程图编写用户宏程序的一般步骤

运用流程图编写用户宏程序的一般步骤为:一分析零件结构,确定宏程序加工的内容,找出加工工艺路线的律;二将零件加工路线规律用流程图表达出来,并进一步分清楚哪些是程序编制过程中的变量,哪些是常量,从而将一般的流程变成程序流程图;三根据程序流程图,编写零件的加工程序。

四、应用举例

(一)宏程序应用实例一

如图1所示,在一根轴上加工N个槽,每个槽的宽度为a1,槽的间距为a2,槽底孝态直径为b1,棒料直径b2,并且设所给材料足够长,试编写程序加工该零件,现有一零件参数为N=100个槽,槽底直径b1=30mm,槽宽a1=5mm,工件直径b2=40mm,间隔a2=2mm,刀宽=3mm,现编写程序加工。图11零件工艺过程分析

该零件是一个比较简单的例子,在压面机械上用得较多。零件的精度要求不高,为了使程序有更广泛的适应性,将宏程序做成一个子程序,用主程序来调用实现零件的加工。加工时将坐标原点选择在如图所示的位置,X轴离第一个槽的距离为一个间距a2的距离。

零件的加工过程如下将:将刀具移至加工起点→进刀→切削第一个槽→计算下一槽的位置并将刀具移到此位置→加工下一个槽……如此至最后一个槽加工完为止。

将此过程画成流程图,如图2(a)所示。

(a) (b)

图2

2零件加工过程中所使用的变量

通过分析,要加工该零件,需要如下一些变量:

工件直径#200= b2

槽底直径#201= b1

槽宽#202= a1

槽间间隔#203= a2

切槽刀宽度#204

每加工一个槽后,切槽刀在Z轴方向移动的距离#205(等于槽间距加上槽宽)

槽的起点坐标Xs=#206,Zs=#207

槽加工终点的坐标Xf=#208,Yf=#209

计算槽数目的变量#215

加工槽的总数#216

由此画出编制程序所用的流程图,如图2(b)所示。

3根据程序流程图编制程序

宏程序O9061

N10 G65 H83 P160 Q#204 R#202 如果刀宽大于槽完,则结束

N20 G65 H01 P#215 Q0 计数器变量清零

N30 G65 H02 P#205 Q#202 R#203计算#205

N40 G65 H02 P#206 Q#200 R5 工件直径加上5mm作为X方向起点

N50 G65 H02 P#207 Q#203 R#204槽的间距加上一个刀宽

N60 G65 H01 P#207 Q?#207 取负值后作为第一个槽的Z向起点

N70 G65 H01 P#208 Q#201 槽底直径作为槽终点的X坐标

N80 G65 H01 P#209 Q?#205 第一个槽终点Z向坐标

N90 G00 X#206 Z#207 M08 定位到槽加工的位置

N100 G75 R1

N110 G75 X#208 Z#209 P2 Q#204 F20 加工槽

N120 G65 H03 P#207 Q#207 R#205 下一个槽起点Z向坐标计算

N130 G65 H03 P#209 Q#209 R#205 下一个槽终点Z向坐标计算

N140 G65 H02 P#215 Q#215 R1 槽计数器加1

N150 G65 H84 P90 Q#215 R#216判断槽是否加工完毕

N160 M08

N170 M99 结束

主程序 O0001

N10 G65 H01 P#200 Q40工件直径赋值

N20 G65 H01 P#201 Q30槽底直径赋值

N30 G65 H01 P#202 Q5 槽宽赋值

N40 G65 H01 P#203 Q2 槽间间隔赋值

N50 G65 H01 P#204 Q3 切槽刀宽赋值

N60 G65 H01 P#216 Q100 槽数赋值

N70 G00 X100 Z100 起刀点位置

N80 M98 P9061 调用宏程序

N90 M30 程序结束

(二)宏程序应用实例二

对于一些大悬伸(加工深度与刀具直径之比较大)的零件,用普通加工方法总难达到理想效果,此时用插铣法容易保证零件精度,如图3所示的零件,尺寸80很难保证,用插铣法后获得了比较好的效果。曾经有工厂做过类似的程序,但程序只是针对零件本身,适应性不强,当零件的尺寸发生变化后,程序还得发生较大修改。笔者针对这种情况,将程序分为主程序和子程序,当零件的尺寸发生变化后,只需要修改主程序即可,非常方便。

1加工工艺分析

传统加工工艺方法采用多次重复加工。很难消除让刀,并且造成加工应力,最后由于应力释放造成零件的内腔变小。为了解决这个问题,我们将加工分为粗加工和精加工,粗加工采用普通的工艺方法,精加工采用插铣。

建立如图3所示的坐标系,为了保证加工质量,防止划伤已加工过的表面,编程时避免使用钻孔循环指令。加工轨迹如图4所示,在YZ平面内进行以下加工步骤:加工第一刀→沿圆弧退刀→返回Z=3处→沿圆弧进刀→沿X方向移动一个步距→加工第二刀→…。

加工过程中,粗加工尺寸80按79.6加工,而精加工采用宏程序编制高速插铣程序。精加工的具体参数如表2所示

图3零件图及坐标系 图4刀具路径表2精加工参数

加工方式

加工材料

刀具

步距

设置安全高度

顺铣

铝合金

Φ18整体硬质合金加长球头刀

0.05

Z=3

2加工流程图

为增强程序的适应性,本程序刀分为子程序和主程序来编写,子程序起始位置为(0,0,50),刀具在加工过程中的基本路线是按前面所给出的路线来走刀。

由此画出加工流程图如图5(a)所示。(a) (b)

图5

3程序所使用的变量及程序流程图

本程序中所使用的变量如下:

需加工部位X方向的长度:#1;

需加工部位Y方向的长度:#2;

需加工部位Z方向的深度:#3;

X方向的步距:#4;

走刀轨迹中,退(或进)刀时的半径:#5(本例图4中的R10);

中间变量:#6、#7、#8、#9

由所确定的变量及加工流程图,画出程序流程图如图5(b)所示。

4编制程序

子程序:%9001

N10 #1=#1/2#1变量取1/2作为X坐标

N20 #2=#2/2#2变量取1/2作为Y坐标

N30 G00 X#1 X方向定位到加工位置

N40 G41 D1 Y#2 Y方向定位到加工位置

N50 G01 Z3 F3000 M08 下降下安全高度,开冷却液

N60 #6=-(#3-#5) 计算加工终点Z向坐标

N70 #7=#2-2*#5 计算退刀终点Y坐标

N80 G01 Z#6 插铣加工

N90 G02 Y#7 R#5退刀

N100 G01 Z3 返回

N110 G02 Y#2 R#5进刀

N120 #8=#8+#4 X方向总加工长度计数

N130 G91 G01 X-#4 X方向走一个步距

N140 IF #8LE#1 GOTO 80 判别第一侧是否加工完

N150 G90 Y-#2 移至另一侧

N160 G01 Z#6 插铣加工另一侧

N180 G02 Y-#7 R#5 退刀

N190 G01 Z3 返回安全高度

N200 G02 Y-#2 R#5 进刀

N210 #9=#9+#4 X方向总加工长度计数

N220 G91 G01 X#4 X方向移动一个步距

N230 IF #9LE#1 GOTO 160判别另一侧是否加工完

N240 G90 G40 G00 X0 Y0 M09X、Y方向返回起始点

N250Z50Z方向返回起始点

N260 M99 宏程序结束

主程序:%1010

N10 T01选一号刀

N20 M06 换刀

N30 G00 G90 G54 G19 X0 Y0 S5000 M03定位到起始位置,选择坐标平面及坐标系,启动主轴。

N40 G43 H01 Z50 Z方向补偿

N60 G65 P9001 A200 B80.05 C90 D0 E0 F0 I0.05 J10 K0 调用宏程序并给相关变量赋值

N70 M05停止主轴

N80 G49 Z50 Z方向取消补偿

N90 M30程序结束

五、结束语

利用流程图编制用户宏程序,思路清晰,所编制的程序适应性好,是一种值得推广的方法。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12380195.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-25
下一篇 2023-05-25

发表评论

登录后才能评论

评论列表(0条)

保存