matlab全局优化与局部优化

matlab全局优化与局部优化,第1张

在实际的工作和生活过程中,优化问题无处不在,比如资源如何分配效益最高,拟合问题,最小最大值问题等等。优化问题一般分为尺核局部最优全局最优,局部最优,就是在函数值空间的一个有限区域内寻找最小值;而全局最优,是在函数值空间整个区域寻找最小值问题。

matlab中的提供的传统优化工具箱(Optimization Tool),能实现局部最优,但要得全局最优,则要用全局最优化算法(Global Optimization Tool),主要包括:

GlobalSearch 全局搜索和 MultiStart 多起点方法产生若干起始点,然后它们用局部求解器去找到起始点吸引盆处的最优点。

ga 遗传算法用一组起始点(称为种群),通过迭代从种群中产生更好的点,只要初始种群覆盖几个盆,GA就能检查几个盆。

simulannealbnd 模拟退火完成一个随机搜索,通常,模拟退火算法接受一个点,只要这个点比前面那个好,它也偶而接受一个比较糟的点,目的是转向不同的盆。

patternsearch 模式搜索算法在接受一个点之前要看看其附近的一组点。假如附近的某些点属于不同的盆,模式搜索算法本质上时同时搜索若干个盆。

下面我就一些具体例子,来说明各种优化方法:

可以看出,初值x0不同,得到的结果侍孙截然不同,这说明这种求解器,能寻找局部最优,但不一定是全局最优,在起点为8时,取得全局最优。

我们换一种求解器:fminbound,这种求解器不需要给点初值。

因此全局最优的方法能够获取全局最优。

结果:最小二乘拟合结果误差较大

可以陵谈掘看出全局优化结果较好,误差较小。

这种算法的运行时间:Elapsed time is 6.139324 seconds.

使用并行计算的方式解决

结果:14 out of 100 local solver runs converged with a positive local solver exit flag.

Elapsed time is 4.358762 seconds.Sending a stop signal to all the labs ... stopped.可以看出,运行时间减少,提高了效率。

这种方法只能寻找局部最优。

现在用全局优化算法:

%不知道你具体的问题是什么,下面是一个最基本的pso算法解决函数极值问题,如雀基果是一些大型的问题,需要对速度、惯性顷毕谨常数、和自适应变数游异做进一步优化,希望对你有帮助

function y = fun(x)

y=-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289

%下面是主程序

%% 清空环境

clc

clear

%% 参数初始化

%粒子群算法中的两个参数

c1 = 1.49445

c2 = 1.49445

maxgen=200 % 进化次数

sizepop=20 %种群规模

Vmax=1%速度限制

Vmin=-1

popmax=5%种群限制

popmin=-5

%% 产生初始粒子和速度

for i=1:sizepop

%随机产生一个种群

pop(i,:)=5*rands(1,2) %初始种群

V(i,:)=rands(1,2) %初始化速度

%计算适应度

fitness(i)=fun(pop(i,:)) %染色体的适应度

end

%找最好的染色体

[bestfitness bestindex]=min(fitness)

zbest=pop(bestindex,:) %全局最佳

gbest=pop %个体最佳

fitnessgbest=fitness %个体最佳适应度值

fitnesszbest=bestfitness %全局最佳适应度值

%% 迭代寻优

for i=1:maxgen

for j=1:sizepop

%速度更新

V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:))

V(j,find(V(j,:)>Vmax))=Vmax

V(j,find(V(j,:)<Vmin))=Vmin

%种群更新

pop(j,:)=pop(j,:)+0.5*V(j,:)

pop(j,find(pop(j,:)>popmax))=popmax

pop(j,find(pop(j,:)<popmin))=popmin

%自适应变异(避免粒子群算法陷入局部最优)

if rand>0.8

k=ceil(2*rand)%ceil朝正无穷大方向取整

pop(j,k)=rand

end

%适应度值

fitness(j)=fun(pop(j,:))

%个体最优更新

if fitness(j) <fitnessgbest(j)

gbest(j,:) = pop(j,:)

fitnessgbest(j) = fitness(j)

end

%群体最优更新

if fitness(j) <fitnesszbest

zbest = pop(j,:)

fitnesszbest = fitness(j)

end

end

yy(i)=fitnesszbest

end

%% 结果分析

plot(yy)

title(['适应度曲线 ' '终止代数=' num2str(maxgen)])

xlabel('进化代数')ylabel('适应度')

matlab最优化程序包括

无约束一维极值问题 进退法 黄金分割法 斐波那契法 牛顿法基本牛顿法 全局牛顿法 割线法 抛物线升渣销法 三次插值法 可接受搜索法 Goidstein法 Wolfe.Powell法

单纯形搜索法 Powell法 最速下降法 共轭梯度法 牛顿梁返法 修正牛顿法 拟牛顿法 信赖域法 显式最速下降法, Rosen梯度投影法 罚函数法 外点罚函数法

内点罚函数法 混合罚函数法 乘子法 G-N法 修正G-N法 L-M法 线性规划 单纯形法 修正单纯形法 大M法 变量有界单纯形法 整数规划 割平面法 分支定界法 0-1规划 二次规划

拉格朗曰法 起作用集算法 路径跟踪法 粒子群优化算法 基本粒子群算法 带压缩因子的粒子群吵游算法 权重改进的粒子群算法 线性递减权重法 自适应权重法 随机权重法

变学习因子的粒子群算法 同步变化的学习因子 异步变化的学习因子 二阶粒子群算法 二阶振荡粒子群算法


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12385236.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-25
下一篇 2023-05-25

发表评论

登录后才能评论

评论列表(0条)

保存