(1)收集训练样本茄陪:
训练样本包括正样本和负样本。正蚂誉样本,通俗点说,就是图片中只有你需要的目标。而负样本的图片只要其中不含有目标就可以了。但需要说明的是,负样本也并非随便选取的。例如,你需要检测的目标是汽车,那么正样本就应该是仅仅含有汽车的图片,而负样本显然不能颤物蠢是一些包含天空的,海洋的,风景的图片。因为你最终训练分类器的目的是检测汽车,而汽车应该出现在马路上。也就是说,分类器最终检测的图片应该是那些包含马路,交通标志,建筑物,广告牌,汽车,摩托车,三轮车,行人,自行车等在内的图片。很明显,这里的负样本应该是包含摩托车、三轮车、自行车、行人、路面、灌木丛、花草、交通标志、广告牌等。
人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。 人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。 人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。
主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法芦唯。
人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。 人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。
基数衫于知识的表征方法主要是根据人脸器官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分量通常包括特征点间的欧氏距离、曲率和角度等。人脸陪毕培由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。 人脸图像匹配与识别:提取的人脸图像的特征数据与数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输出。人脸识别就是将待识别的人脸特征与已得到的人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。这一过程又分为两类:一类是确认,是一对一进行图像比较的过程,另一类是辨认,是一对多进行图像匹配对比的过程。
转自:http://hi.baidu.com/andyzcj/blog/item/3b9575fc63c3201f09244d9a.html可能遇到的问题:1.如果跑到某一个分类器时,几个小时也没有反应,而且显示不出训练百分比,这是因为你的负样本数量太少,或者负样本的尺寸太小,所有的负样本在这个分类器都被reject了,程序进入不了下一个循环,果断放弃吧。解决方法:负样本尽量要大一些,比如我的正样本是40*15,共300个,负样本是640*480,共500个。2.读取样本时报错:NegativeortoolargeargumentofCvAllocfunction,网上说这个错误是因为opencv规定单幅iplimage的内存分配不能超过10000,可是我的每个负样本都不会超过这个大小,具体原因不明。后来我把负样本的数量减少,尺寸加大,这个问题就解决了。最近要做一个性别识别的项目,在人脸检测与五官定位上我采用OPENCV的haartraining进行定位,这里介绍下这两天我学习的如何用opencv训练自己的分类器。在这两天的学习里,我遇到了不少问题,不过我遇到了几个好心的大侠帮我解决了不少问题,特别拦蚂运是无忌,在这里我再次感谢他的帮助。一、简介目标检测方法最初由PaulViola[Viola01]提出,并由RainerLienhart[Lienhart02]对这一方法进行了改善。该方法的基本步骤为:首先,利用样本(大约几百幅样本图片)的harr特征进行分类器训练,得到一个级联的boosted分类器。分类器中的"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器,这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。分类器训练完以后,就可以应用于输入图像中的感兴趣区域的检测。检测到目标区域分类器输出为1,否则输出为0。为了检测整副图像,可以在图像中移动搜索窗口,检测每一个位置来确定可能的目标。为了搜索不同大小的目标物体,分类器被设计为可以进行尺寸改变,这样比改变待检图像的尺寸大小更为有效。所以,为了在图像中检测未知大小的目标物体,扫描程序通常需要用不同比例大小的搜索窗口对图片进行几次扫描。目前支持这种分类器的boosting技术有四种:DiscreteAdaboost,RealAdaboost,GentleAdaboostandLogitboost。"boosted"即指级联分类器的每一层都可以从中选取一个boosting算法(权重投票),并利用基础分类器的自我训练得到。根据上面的分析,目标检测分为三个步骤:1、样本的创建2、训练分类器3、利用训练好的分类器进行目标检测。二、样本创建训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本,反例样本指其它任意图片。负样本负样本可以来自于任意的图片,但这些图片不能包含目标特征。负样本由背景描述文件来描述。背景描述文件是一个文本文件,每一行包含了一个负样本图片的文件名(基于描述文件的相对路径)。该文件创建方法如下:采用Dos命令生成样本描述文件。具体方法是在Dos下的进入你的图片目录,比如我的图片放在D:\face\posdata下,则:按Ctrl+R打开Windows运行程序,输入cmd打开DOS命令窗口,输入d:回车,再输入cdD:\face\negdata进入图片路径,再次输入dir/b>negdata.dat,则会图片路径下生成一个negdata.dat文件,打开该文件将最后一行的negdata.dat删除,简梁这样就生成了负样本描述文件。dos命令窗口结果如下图:正样本对于正样本,通常的做法是先把所有正样本裁切好,并对尺寸做规整(即缩放至指定大小),如下图所示:由于HaarTraining训练时输入的正样本是vec文件,所以需要使用OpenCV自带的CreateSamples程序(在你所按照的opencv\bin下,如果没有需要编译opencv\apps\HaarTraining\make下的.dsw文件,注意要编译物逗release版的)将准备好的正样本转换为vec文件。转换的步骤如下:1)制作一个正样本描述文件,用于描述正样本文件名(包括绝对路径或相对路径),正样本数目以及各正样本在图片中的位置和大小。典型的正样本描述文件如下:posdata/1(10).bmp1112323posdata/1(11).bmp1112323posdata/1(12).bmp1112323不过你可以把描述文件放在你的posdata路径(即正样本路径)下,这样你就不需要加前面的相对路径了。同样它的生成方式可以用负样本描述文件的生成方法,最后用txt的替换工具将“bmp”全部替换成“bmp1112323”就可以了,如果你的样本图片多,用txt替换会导致程序未响应,你可以将内容拷到word下替换,然后再拷回来。bmp后面那五个数字分别表示图片个数,目标的起始位置及其宽高。这样就生成了正样本描述文件posdata.dat。2)运行CreateSamples程序。如果直接在VC环境下运行,可以在Project\Settings\Debug属性页的Programarguments栏设置运行参数。下面是一个运行参数示例:-infoD:\face\posdata\posdata.dat-vecD:\face\pos.vec-num50-w20-h20表示有50个样本,样本宽20,高20,正样本描述文件为posdata.dat,结果输出到pos.vec。或者在dos下输入:"D:\ProgramFiles\OpenCV\bin\createsamples.exe"-info"posdata\posdata.dat"-vecdata\pos.vec-num50-w20-h20运行完了会d:\face\data下生成一个*.vec的文件。该文件包含正样本数目,宽高以及所有样本图像数据。结果入下图:Createsamples程序的命令行参数:命令行参数:-vec训练好的正样本的输出文件名。-img源目标图片(例如:一个公司图标)-bg背景描述文件。-num要产生的正样本的数量,和正样本图片数目相同。-bgcolor背景色(假定当前图片为灰度图)。背景色制定了透明色。对于压缩图片,颜色方差量由bgthresh参数来指定。则在bgcolor-bgthresh和bgcolor+bgthresh中间的像素被认为是透明的。-bgthresh-inv如果指定,颜色会反色-randinv如果指定,颜色会任意反色-maxidev背景色最大的偏离度。-maxangel-maxangle,-maxzangle最大旋转角度,以弧度为单位。-show如果指定,每个样本会被显示出来,按下"esc"会关闭这一开关,即不显示样本图片,而创建过程继续。这是个有用的debug选项。-w输出样本的宽度(以像素为单位)-h《sample_height》输出样本的高度,以像素为单位。到此第一步样本训练就完成了。恭喜你,你已经学会训练分类器的五成功力了,我自己学这个的时候花了我一天的时间,估计你几分钟就学会了吧。三、训练分类器样本创建之后,接下来要训练分类器,这个过程是由haartraining程序来实现的。该程序源码由OpenCV自带,且可执行程序在OpenCV安装目录的bin目录下。Haartraining的命令行参数如下:-data存放训练好的分类器的路径名。-vec正样本文件名(由trainingssamples程序或者由其他的方法创建的)-bg背景描述文件。-npos,-nneg用来训练每一个分类器阶段的正/负样本。合理的值是:nPos=7000nNeg=3000-nstages训练的阶段数。-nsplits决定用于阶段分类器的弱分类器。如果1,则一个简单的stumpclassifier被使用。如果是2或者,则带有number_of_splits个内部节点的CART分类器被使用。-mem预先计算的以MB为单位的可用内存。内存越大则训练的速度越快。-sym(default)-nonsym指定训练的目标对象是否垂直对称。垂直对称提高目标的训练速度。例如,正面部是垂直对称的。-minhitrate《min_hit_rate》每个阶段分类器需要的最小的命中率。总的命中率为min_hit_rate的number_of_stages次方。-maxfalsealarm没有阶段分类器的最大错误报警率。总的错误警告率为max_false_alarm_rate的number_of_stages次方。-weighttrimming指定是否使用权修正和使用多大的权修正。一个基本的选择是0.9-eqw-mode选择用来训练的haar特征集的种类。basic仅仅使用垂直特征。all使用垂直和45度角旋转特征。-w《sample_width》-h《sample_height》训练样本的尺寸,(以像素为单位)。必须和训练样本创建的尺寸相同。一个训练分类器的例子:"D:\ProgramFiles\OpenCV\bin\haartraining.exe"-datadata\cascade-vecdata\pos.vec-bgnegdata\negdata.dat-npos49-nneg49-mem200-modeALL-w20-h20训练结束后,会在目录data下生成一些子目录,即为训练好的分类器。训练结果如下:恭喜你,你已经学会训练分类器的九成功力了。四:利用训练好的分类器进行目标检测。这一步需要用到performance.exe,该程序源码由OpenCV自带,且可执行程序在OpenCV安装目录的bin目录下。performance.exe-datadata/cascade-infoposdata/test.dat-w20-h20-rs30performance的命令行参数如下:Usage:./performance-data-info[-maxSizeDiff][-maxPosDiff][-sf][-ni][-nos][-rs][-w][-h]也可以用opencv的cvHaarDetectObjects函数进行检测:CvSeq*faces=cvHaarDetectObjects(img,cascade,storage,1.1,2,CV_HAAR_DO_CANNY_PRUNING,cvSize(40,40))//3.检测人脸欢迎分享,转载请注明来源:内存溢出
评论列表(0条)