当我们有一个很长很长的任务队列(mission_list)和阈值对应的一个处理函数(missionFunction)时,我们一般采用如下的方式进行处理:
但是,如果这任务列表很长很长,处理函数很复杂(占用cpu)时,单核往往需要很长的时间进行处理,此时,Multiprocess便可以极大的提高我们程序的运行速度,州粗相关内容请借鉴 multiprocessing --- 基于进程的并行 — Python 3.10.4 文档。
以上这种场景下,推荐大家采用最简单的进程池+map的方法进行处理,标准的写法, chunksize要借鉴官方的说法,最好大一点 :
但是!!!! 如果我们的任务列表非常的长,这会导致多进程还没跑起来之前,内存已经撑爆了,任务自然没法完成,此时我们有几种办法进行优化:
进程的启动方法有三种,可参考官方文档:
[图片上传失败...(image-48cd3c-1650511153989)]
在linux环境下,使用forkserver可以节省很多的内存空间, 因为进携迹衡程启动的是一个服务,不会把主进程的数据全部复制
采用imap会极大的节省空间,它返回的是一个迭代器,也就是结果列表:
但注意,以上写法中,你写的结果迭代部分必须写在with下面。或者采用另一种写法:
还有最后一种,当你的mission list实在太大了,导致你在生成 mission list的时候已经把内存撑爆了,这个时候就得优化 mission_list了,如果你的mission_list是通过一个for循环生成的,你可以使用yield字段,将其封装为一个迭代器,传入进程池:
这样子,我们就封装好了mission_list,它是一个可迭代对象,在取数据的辩做时候才会将数据拉到内存
我在项目中结合了后两种方法,原本256G的内存都不够用,但在修改后内存只占用了不到10G。希望能够帮助到你
python控制内存的方法:一、对象的引用计数机制
二、垃圾回收机余逗制
三、内存池机制
一、对象的引用计数机制
Python内部使用引用计数,来保持追踪内存中的对象,所有对象都有引用计数。
引用计数增加的情况:
1、一个对象分配一个新名称
2、将其放入一个容器中(如列表、元组或字典)
引用计数减少的情况:
1、使用del语句对对象别名显示的销毁
2、引用超出作用域或被重新赋值 sys.getrefcount( )函空盯数可以获得对象的当前引用计数
多数情况下,引用计数比你猜测得要大得多。对于不可变数据(如数字和字符串),解释器会在程序的不同部分共享内存,以便节约内存。
二、垃圾回收
1、当一个对象的引用计数归零时,它将被垃圾收集机制处理掉。
2、当两个对象a和b相互引用时,del语句可以减少a和b的引用计数,并销毁用于引用底层对象的名称。然而由于每个对象都包含一个对其他对象的应用,因此引用计数不会归零,对象也不会销毁。(从而导致内存泄露)。为解决这一问题,解释器会定期执行一个循环检测器,搜索不可访问对象的循环并删除它们。
三、内存池机制
Python提供了对内存的垃圾收集机制,但是它将不用的内存放到内存池而不是返回斗毁和给 *** 作系统。
1、Pymalloc机制。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。
2、Python中所有小于256个字节的对象都使用pymalloc实现的分配器,而大的对象则使用系统的malloc。
3、对于Python对象,如整数,浮点数和List,都有其独立的私有内存池,对象间不共享他们的内存池。也就是说如果你分配又释放了大量的整数,用于缓存这些整数的内存就不能再分配给浮点数。
更多Python知识请关注Python视频教程栏目。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)