1)对A做SVD:
A = U S V, 其中 U, V为搏慧孝酉方阵, S为一般对碧伏角阵
2)将S非零元取逆, 零元不变, 然后专置得到一个一般对角阵T
3)则广义逆为A+ = V* T U*, 其中 * 表示取矩阵的复共轭.
请采纳。
Matlab安装并运行matlab软件2 在命令行窗口输入需要进行奇异值分解的矩阵,并输入矩阵求秩及求奇异值的公式,如下图3 单击回车宏薯皮键,求得奇手则异值蔽差分解得到的u、s、v矩阵答案1:: 奇异值分解 (sigular value decomposition,SVD) 是另一种正交矩阵分解法;SVD是最可靠的分解法,但是它比QR 分解法要花
上近十倍的计算时间。[U,S,V]=svd(A),其中者桥斗U和V代表二个相互正交
矩阵,而S代表一对角矩阵。 和QR分解法相同者, 原矩阵A不必为正方矩阵。
使用SVD分解法的用途是解最小平方误差法和数据压缩
答案2:: 奇异值分解是线性代数中一种重要的矩阵分解,在信号处
啊?答案3:: [U,S,V]=svd(A)奇异值首磨分解消返,就是要把矩阵A分解成
U*S*V' (V'代表V转置).其中U S是正交矩阵(复数域对应为酉矩阵)
奇异值分解可以用来求矩阵的逆,数据压缩等等,不过具体的用法不
是几句话就能说清楚的。总之,奇异值分解特别重要。
:::::::::::::::::::请参考以下相关问题::::::::::::::::::::
求matlab中的矩阵的奇异值分解(SVD)程序
:::::::::::::::::::请参考以下相关问题::::::::::::::::::::
最近在翻译matlab代码为VC代码,遇到SVD奇异值分解卡住了。
:::::::::::::::::::请参考以下相关问题::::::::::::::::::::
:::::::::::::::::::请参考以下相关问题:::::::::::::::::::::::::::::::::::::::请参考以下相关问题::::::::::::::::::::
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)