#define GET_BIT(p_array, bit_index) ((p_array[(bit_index) >>3] >>(7 - ((bit_index) &0x07))) &0x01)
//设置缓冲区的指定位.
#define SET_BIT(p_array,bit_index,bit_val) if(1==(bit_val))\
{p_array[(bit_index)>>3]|=0x01 <<(7 - ((bit_index)&0x07))}else {p_array[(bit_index)>>3]&=~(0x01<<(7 - ((bit_index)&0x07)))}
//加解密标识,这两个标识涉及到对表的读取位置,
//必须保证DES_ENCRYPT = 0 DES_DECRYPT = 1
CONST uint8 Table_IP[64] =
{
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
}
// 末置换
CONST uint8 Table_InverseIP[64] =
{
40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
}
// 扩展置换
CONST uint8 Table_E[48] =
{
32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
}
// 密钥初始置换
CONST uint8 Table_PC1[56] = {
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
}
//冲告 左右者滚移运算
CONST signed char Table_Move[2][16] =
{
//加密左移
{1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1},
//解密右移
{0, -1, -2, -2, -2, -2, -2, -2, -1, -2, -2, -2, -2, -2, -2, -1}
}
// 密钥压缩置换
CONST uint8 Table_PC2[48] =
{
14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
}
// S盒
CONST uint8 Table_SBOX[8][4][16] =
{
// S1
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
// S2
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
// S3
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
// S4
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
// S5
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
// S6
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
// S7
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
// S8
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
}
// P盒置换
CONST uint8 Table_P[32] =
{
16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
}
//对两块大小相同的内存区进行异或
//异或结果保存到第一块内存
//uint8 * p_buf_1 内存区1
//const uint8 * p_buf_2 内存区2
//uint8 bytes 内存区大小(单位:字节)
void Xor(uint8 * p_buf_1, uint8 * p_buf_2, uint8 bytes)
{
while(bytes >0)
{
bytes--
p_buf_1[bytes] ^= p_buf_2[bytes]
}
}
//将缓冲区从第bit_start位到第bit_end进行循环左移
//offset只能是1,2
//本段代码还可以优化。
void move_left(uint8 * p_input, uint8 bit_start, uint8 bit_end, uint8 offset)
{
uint8 IDATA b_val = 0
uint8 IDATA b_tmp1 = 0
uint8 IDATA b_tmp2 = 0
//读取bit_start位
b_tmp1 = GET_BIT(p_input, bit_start)
b_tmp2 = GET_BIT(p_input, bit_start + 1)
//循环左移offset位
for(bit_start <= (bit_end - offset)bit_start++)
{
b_val = GET_BIT(p_input, bit_start + offset)
SET_BIT(p_input, bit_start, b_val)
}
//将bit_start开始的offset位移到bit_end后头来
if (1 == offset)
{
SET_BIT(p_input, bit_end, b_tmp1)
}
else
{
SET_BIT(p_input, bit_end, b_tmp2)
SET_BIT(p_input, bit_end - 1, b_tmp1)
}
}
//将缓冲区从第bit_start位到第bit_end进行循环右移
//offset只能是1,2
//本段代码在性能上还可以优化。
void move_right(uint8 * p_input, uint8 bit_start, uint8 bit_end, uint8 offset)
{
uint8 IDATA b_val = 0
uint8 IDATA b_tmp1 = 0
uint8 IDATA b_tmp2 = 0
//读取bit_end位
b_tmp1 = GET_BIT(p_input, bit_end)
b_tmp2 = GET_BIT(p_input, bit_end - 1)
//循环左移offset位
for(bit_end >= (bit_start + offset)bit_end--)
{
b_val = GET_BIT(p_input, bit_end - offset)
SET_BIT(p_input, bit_end, b_val)
}
//将bit_end倒数的offset位移到bit_start来
if (1 == offset)
{
SET_BIT(p_input, bit_start, b_tmp1)
}
else
{
SET_BIT(p_input, bit_start, b_tmp2)
SET_BIT(p_input, bit_start + 1, b_tmp1)
}
}
//缓冲区移位
//offset大于0时左移
//offset小于0时右移
void move_bits(uint8 * p_input, uint8 bit_start, uint8 bit_end, char offset)
{
if(0 <offset) //左移
{
move_left(p_input, bit_start, bit_end, offset)
}
else if(0 >offset) //右移
{
move_right(p_input, bit_start, bit_end, -offset)
}
}
//通用置换函数, bits <= 64
//p_input与p_output不能指向同一个地址,否则置换会出错。
void Permutation(uint8 * p_input, uint8 * p_output, uint8 * Table, uint8 bits)
{
uint8 IDATA b_val = FALSE
uint8 IDATA bit_index = 0
for(bit_index = 0bit_index <bitsbit_index++)
{
b_val = GET_BIT(p_input, Table[bit_index] - 1)
SET_BIT(p_output, bit_index, b_val)
}
}
//获取从bit_s为起始的第1, 6 位组成行
uint8 S_GetLine(uint8 * p_data_ext, uint8 bit_s)
{
return (GET_BIT(p_data_ext, bit_s + 0) <<1) + GET_BIT(p_data_ext, bit_s + 5)
}
//获取从bit_s为起始的第2,3,4,5位组成列
uint8 S_GetRow(uint8 * p_data_ext, uint8 bit_s)
{
uint8 IDATA row
//2,3,4,5位组成列
row = GET_BIT(p_data_ext, bit_s + 1)
row <<= 1
row += GET_BIT(p_data_ext, bit_s + 2)
row <<= 1
row += GET_BIT(p_data_ext, bit_s + 3)
row <<= 1
row += GET_BIT(p_data_ext, bit_s + 4)
return row
}
///////////////////////////////////////////////////////////////
// 函 数 名 : des
// 函数功能 : DES加解密
// 处理过程 : 根据标准的DES加密算法用输入的64位密钥对64位密文进行加/解密
// 并将加/解密结果存储到p_output里
// 返 回 值 :
// 参数说明 : const char * p_data 输入, 加密时输入明文, 解密时输入密文, 64位(8字节)
// const char * p_key 输入, 密钥, 64位(8字节)
// char * p_output 输出, 加密时输出密文, 解密时输入明文, 64位(8字节)
// uint8 mode DES_ENCRYPT 加密 DES_DECRYPT 解密
///////////////////////////////////////////////////////////////
void des( unsigned char * p_data, unsigned char * p_key, unsigned char * p_output, unsigned char *InVet,DES_MODE mode)
{
uint8 IDATA loop = 0//16轮运算的循环计数器
uint8 XDATA key_tmp[8] //密钥运算时存储中间结果
uint8 XDATA sub_key[6] //用于存储子密钥
uint8 * p_left
uint8 * p_right
uint8 XDATA p_right_ext[8] //R[i]经过扩展置换生成的48位数据(6字节), 及最终结果的存储
uint8 XDATA p_right_s[4]//经过S_BOX置换后的32位数据(4字节)
uint8 IDATA s_loop = 0 //S_BOX置换的循环计数器
//CBC
for(loop = 0loop <8loop++) p_data[loop]^=InVet[loop]
//密钥第一次缩小换位, 得到一组56位的密钥数据
Permutation(p_key, key_tmp, Table_PC1, 56)
//明文初始化置换
Permutation(p_data, p_output, Table_IP, 64)
p_left = p_output//L0
p_right = &p_output[4]//R0
for(loop = 0loop <16loop++)
{
//把缩进小后的把这56位分为左28位和右28位,
//对左28位和右28位分别循环左/右移, 得到一组新数据
//加解密 *** 作时只在移位时有差异
move_bits(key_tmp, 0, 27, Table_Move[mode][loop])
move_bits(key_tmp, 28, 55, Table_Move[mode][loop])
//密钥第二次缩小换位,得到一组子48位的子密钥
Permutation(key_tmp, sub_key, Table_PC2, 48)
//R0扩展置换
Permutation(p_right, p_right_ext, Table_E, 48)
//将R0扩展置换后得到的48位数据(6字节)与子密钥进行异或
Xor(p_right_ext, sub_key, 6)
//S_BOX置换
for(s_loop = 0s_loop <4s_loop++)
{
uint8 IDATA s_line = 0
uint8 IDATA s_row = 0
uint8 IDATA s_bit = s_loop * 12
s_line = S_GetLine(p_right_ext, s_bit)
s_row = S_GetRow(p_right_ext, s_bit)
p_right_s[s_loop] = Table_SBOX[s_loop * 2][s_line][s_row]
s_bit += 6
s_line = S_GetLine(p_right_ext, s_bit)
s_row = S_GetRow(p_right_ext, s_bit)
p_right_s[s_loop] <<= 4
p_right_s[s_loop] += Table_SBOX[(s_loop * 2) + 1][s_line][s_row]
}
//P置换
Permutation(p_right_s, p_right_ext, Table_P, 32)
Xor(p_right_ext, p_left, 4)
memcpy(p_left, p_right, 4)
memcpy(p_right, p_right_ext, 4)
}
memcpy(&p_right_ext[4], p_left, 4)
memcpy(p_right_ext, p_right, 4)
//最后再进行一次逆置换, 得到最终加密结果
Permutation(p_right_ext, p_output, Table_InverseIP, 64)
memcpy(InVet,p_output,8)
}
int DES(unsigned char *bufferin,
unsigned char *bufferout,
unsigned char *key,
long mode)
{
//密钥变换为56字节(去掉校验位)
static unsigned char pc1[56] = {
56, 48, 40, 32, 24, 16, 8,
0, 57, 49, 41, 33, 25, 17,
9, 1, 58, 50, 42, 34, 26,
18, 10, 2, 59, 51, 43, 35,
62, 54, 46, 38, 30, 22, 14,
6, 61, 53, 45, 37, 29, 21,
13, 5, 60, 52, 44, 36, 28,
20, 12, 4, 27, 19, 11, 3 }
//56字节变换为48 字节(数据弊桥压缩)
static unsigned char pc2[48] = {
13, 16, 10, 23, 0, 4,
2, 27, 14, 5, 20, 9,
22, 18, 11, 3, 25, 7,
15, 6, 26, 19, 12, 1,
40, 51, 30, 36, 46, 54,
29, 39, 50, 44, 32, 47,
43, 48, 38, 55, 33, 52,
45, 41, 49, 35, 28, 31 }
//32字节变好余换为48字节(数据扩展)
static unsigned char exp[48] = {
31, 0, 1, 2, 3, 4,
3, 4, 5, 6, 7, 8,
7, 8, 9, 10, 11, 12,
11, 12, 13, 14, 15, 16,
15, 16, 17, 18, 19, 20,
19, 20, 21, 22, 23, 24,
23, 24, 25, 26, 27, 28,
27, 28, 29, 30, 31, 0 }
//64位数据租袜猛IP(Initial Permutation)变换表
static unsigned char ip[64] = {
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7,
56, 48, 40, 32, 24, 16, 8, 0,
58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6 }
//数据逆置换(Final Permutation)
static unsigned char ip_1[64] = {
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25,
32, 0, 40, 8, 48, 16, 56, 24 }
//Permutation P
static unsigned char pp[32] = {
15, 6, 19, 20,
28, 11, 27, 16,
0, 14, 22, 25,
4, 17, 30, 9,
1, 7, 23, 13,
31, 26, 2, 8,
18, 12, 29, 5,
21, 10, 3, 24 }
/* INITIALIZE THE TABLES */
/* Table - s1 */
static unsigned char s1[4][16] = {
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
/* Table - s2 */
static unsigned char s2[4][16] = {
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }
/* Table - s3 */
static unsigned char s3[4][16] = {
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }
/* Table - s4 */
static unsigned char s4[4][16] = {
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }
/* Table - s5 */
static unsigned char s5[4][16] = {
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }
/* Table - s6 */
static unsigned char s6[4][16] = {
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }
/* Table - s7 */
static unsigned char s7[4][16] = {
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }
/* Table - s8 */
static unsigned char s8[4][16] = {
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
/* 密钥生成中的循环左移位的累计次数*/
static unsigned char totrot[] = {
1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28 }
/*----------------------------------------------*/
//long mode = 1//模式,1:加密,2:解密
//unsigned char bufferin[9], bufferout[9]//明文,密文
/*----------------------------------------------*/
long i, j, k
long rotshift//密钥移位次数
//long keylen, buflen//密钥长度,明文长度
unsigned char keybuf[65]//密钥,密钥64字节缓冲区
unsigned char keyreal[57], keys[17][49]//实际使用56字节密钥,48字节密钥数组
unsigned char srcbuf[65], dstbuf[65]//明文,密文64字节缓冲区
unsigned char L[17][33], R[17][33], LR[65], RL[65]//加密时临时数据左右两部分
unsigned char E[17][49]//R数组的扩展数据
unsigned char B[9][7], BB[33], P[33]//E和K异或后的缓冲数组
unsigned char C[17][29], D[17][29], CD[57]//56字节密钥的左右两部分
unsigned char temp1, temp2, m, n, x
//1.变换密钥
//密钥不足8字节则用0补足(或自定义)
//keylen = strlen((const char*)key)
//if(keylen<8)
// memset(key+keylen, 0, (8-keylen))
//将8字节密钥转换为64字节字串
for(i=0i<8i++)
{
j = *(key+i)
keybuf[8*i] = (j / 128) % 2
keybuf[8*i+1] = (j / 64) % 2
keybuf[8*i+2] = (j / 32) % 2
keybuf[8*i+3] = (j / 16) % 2
keybuf[8*i+4] = (j / 8) % 2
keybuf[8*i+5] = (j / 4) % 2
keybuf[8*i+6] = (j / 2) % 2
keybuf[8*i+7] = (j / 1) % 2
}
//根据pc1进行变换成56字节,去掉奇偶校验位
for(i=0i<56i++)
{
keyreal[i] = keybuf[pc1[i]]
}
//将56字节密钥分为左右两部分C[0],D[0]
for(i=0i<28i++)
{
C[0][i] = keyreal[i]
D[0][i] = keyreal[i+28]
}
//循环16次(i从1开始)
for(i=1i<17i++)
{
//根据加密或解密确定密钥顺序
if(mode) //加密
rotshift = totrot[i-1]
else //解密
rotshift = totrot[16-i]
//1)左移固定位数得到C[i]和D[i]
for(j=0j<28j++)
{
C[i][j] = C[0][j]
D[i][j] = D[0][j]
}
for(j=0j<rotshiftj++)
{
temp1 = C[i][0]
temp2 = D[i][0]
for(k=0k<27k++)
{
C[i][k] = C[i][k+1]
D[i][k] = D[i][k+1]
}
C[i][27] = temp1
D[i][27] = temp2
}
//2)将C[i]D[i]用pc2化简为48位k[i]
for(j=0j<28j++)
{
CD[j] = C[i][j]
CD[j+28] = D[i][j]
}
for(j=0j<48j++)
{
keys[i][j] = CD[pc2[j]]
}
}
//2.数据处理
//若明文不足8字节则补0(或自定义)
//buflen = strlen((const char*)bufferin)
//if(buflen<8)
// memset(bufferin+buflen, 0, (8-buflen))
//将8字节数据转换为64字节字串
for(i=0i<8i++)
{
j = *(bufferin+i)
srcbuf[i*8] = (j / 128) % 2
srcbuf[i*8+1] = (j / 64) % 2
srcbuf[i*8+2] = (j / 32) % 2
srcbuf[i*8+3] = (j / 16) % 2
srcbuf[i*8+4] = (j / 8) % 2
srcbuf[i*8+5] = (j / 4) % 2
srcbuf[i*8+6] = (j / 2) % 2
srcbuf[i*8+7] = (j / 1) % 2
}
//将srcbuf按ip进行变换
for(i=0i<64i++)
LR[i] = srcbuf[ip[i]]
//将64字节数据转换为两部分L[0],R[0]
for(i=0i<32i++)
{
L[0][i] = LR[i]
R[0][i] = LR[i+32]
}
//循环16次(i从1开始),用密钥加密数据
for(i=1i<17i++)
{
//1)将32位的R[i-1]按exp扩展为48位的E[i-1]
for(j=0j<48j++)
{
E[i-1][j] = R[i-1][exp[j]]
}
//2)异或E[i-1]和K[i]
for(j=0j<48j++)
{
keys[i][j] = keys[i][j] ^ E[i-1][j]
}
//3)将异或结果分为8个6位长的部分B[8]
for(j=0j<8j++)
{
B[j][0] = keys[i][j*6]
B[j][1] = keys[i][j*6+1]
B[j][2] = keys[i][j*6+2]
B[j][3] = keys[i][j*6+3]
B[j][4] = keys[i][j*6+4]
B[j][5] = keys[i][j*6+5]
}
//4)循环用S表替换(j从1开始)
for(j=0j<8j++)
{
//a)B[j]第1位和第6位组合为M,作为S[j]的行号
m = 2 * B[j][0] + B[j][5]
//b)B[j]第2到5位组合为N,作为S[j]的列号
n = 2 * (2 * (2 * B[j][1] + B[j][2]) + B[j][3]) + B[j][4]
//c)用S[j][M][N]来取代B[j]
switch(j)
{
case 0:
x = s1[m][n]
break
case 1:
x = s2[m][n]
break
case 2:
x = s3[m][n]
break
case 3:
x = s4[m][n]
break
case 4:
x = s5[m][n]
break
case 5:
x = s6[m][n]
break
case 6:
x = s7[m][n]
break
case 7:
x = s8[m][n]
break
}
BB[j*4] = (x / 8) % 2
BB[j*4 + 1] = (x / 4) % 2
BB[j*4 + 2] = (x / 2) % 2
BB[j*4 + 3] = (x / 1) % 2
}
//5)将B[1]到B[8]按P组合得到p
for(j=0j<32j++)
{
P[j] = BB[pp[j]]
}
//6)R[i] = p xor L[i-1]L[i] = R[i-1]
for(j=0j<32j++)
{
R[i][j] = P[j] ^ L[i-1][j]
L[i][j] = R[i-1][j]
}
}
//3.组合变换后的R[16]L[16]按ip_1变换得到最后结果
for(i=0i<32i++)
{
RL[i] = R[16][i]
RL[i+32] = L[16][i]
}
for(i=0i<64i++)
{
dstbuf[i] = RL[ip_1[i]]
}
//将64字节数据转换为8字节
for (i = 0i <8i++)
{
*(bufferout + i) = 0x00
for (k = 0k <7k++)
*(bufferout + i) = ((*(bufferout + i)) + dstbuf[8*i+k]) * 2
*(bufferout + i) = *(bufferout + i) + dstbuf[8*i+7]
}
return 0
}
有点长哈O(∩_∩)O哈!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)