https://spaces.ac.cn/archives/4493/comment-page-1#comments
非常简单,其实和官方写的方法一样。比如MSE:
注意的是,损失函数def mean_squared_error(y_true, y_pred)中的两个参数是固定的,由Keras自动注入。第一个参数来自于model.fit(x=[],y=[])中的y中的第n个,代表的是真实标签。第二个参数来自于推理后model.outputs相应位置的输余知出。
同时,model.compile()方法中loss传入的是方法体名称,非方法的return。
https://github.com/umbertogriffo/focal-loss-keras/blob/master/losses.py
为了传入超参数,使用了python的wrapper模式构建函数,函数实际返回的是内部函数的名称,符合上述定义。
https://stackoverflow.com/questions/53996020/keras-model-with-tf-contrib-losses-metric-learning-triplet-semihard-loss-asserti
https://github.com/rsalesc/TCC/blob/master/scpd/tf/keras/common.py
由于triplet loss的输入比较特殊,是label(非one-hot格式)与嵌入层向量,因此,对应的,我们在keras的数据输入阶段,提供的第二个label就得是非one-hot格式。同时,model构造中得定义嵌入竖散消层,并使用L2正则化,且作为model的一个output以方便loss中调用。
实例中,定义模型时,我们分开定义嵌入层的logits与激活函数,以提取出来嵌入层的值。
当然,在输入数据的生成器中,也必须每次:
yield img,[one_hot_label, label] 以对应。
之后即可构造自定义的triplet loss func:
最后在compile中调用即可:
网易云课堂-吴恩达深度学习的triplet loss章节
https://blog.csdn.net/weixin_40400177/article/details/105213578
https://blog.csdn.net/qq_36387683/article/details/83583099
https://zhuanlan.zhihu.com/p/121763855
Easy Triplets 显然不应加入训练,因为它的损失为0,加在loss里面会拉低loss的平均值。Hard Triplets 和 Semi-Hard Triplets 的选择则见仁见智,针对不同的任务需求,可以只选择Semi-Hard Triplets或者Hard Triplets,也可以两者混用。
如图中所示,其实最难分类的是
semi-hard triplets:d(a,p) <d(a,n) <d(a,p) + margin
我们试图找出这样的图片对来加以训练。
可以使用离线学习,每次训练先找到难分类的图片对,然后喂入网络,但是这样很麻烦,且网络结构同样不好设计。因此使用在线挖掘,即每次在一个batch即B个特征向量中,去挖掘出(a,p)和最难分类的(a,n)来计算loss并反向传播。
官方API:
官方解释的很清楚了,就是想让处于semi-hard区域的最小的d(a,n)尽量去远离>d(a,p)+margin,而由于该(a,n)处于semi-hard区域掘芦因此该d(a,n)必须至少>d(a,p)。若找不到这样的(a,n),则表明可能(a,n)比起(a,p)更小,因此使用最大的(a,n)代替。
用keras框架较为方便
首先安装anaconda,然后通过pip安装keras
以下转自wphh的博客。
#coding:utf-8''友岩者'
GPU run command:
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python cnn.py
CPU run command:
python cnn.py
2016.06.06更新:
这份代码是keras开发初期写的,当时keras还没有现在这么流行,文档也还没那么丰富,所以我当时写了一些简单的教程。
现在keras的API也发生了一些的变化,建议及推荐直接上keras.io看更加详细的教程。
'''
#导入各种用到的模块组件
from __future__ import absolute_import
from __future__ import print_function
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.advanced_activations import PReLU
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD, Adadelta, Adagrad
from keras.utils import np_utils, generic_utils
from six.moves import range
from data import load_data
import random
import numpy as np
np.random.seed(1024) # for reproducibility
#加载数据
data, label = load_data()
#打乱数据
index = [i for i in range(len(data))]
random.shuffle(index)
data = data[index]
label = label[index]
print(data.shape[0], ' samples')
#label为0~9共10个类别,keras要求格式为binary class 枣祥matrices,转化一下,直接调用keras提供的这个函数
label = np_utils.to_categorical(label, 10)
###############
#开始建立CNN模型
###############
#生成一个model
model = Sequential()
#第一个卷积层,4个卷积核,每个卷积核大小5*5。1表示输入的图片的通道,灰度图为1通道。
#border_mode可以是valid或者full,具体看这里好薯说明:http://deeplearning.net/software/theano/library/tensor/nnet/conv.html#theano.tensor.nnet.conv.conv2d
#激活函数用tanh
#你还可以在model.add(Activation('tanh'))后加上dropout的技巧: model.add(Dropout(0.5))
model.add(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28)))
model.add(Activation('tanh'))
#第二个卷积层,8个卷积核,每个卷积核大小3*3。4表示输入的特征图个数,等于上一层的卷积核个数
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(8, 3, 3, border_mode='valid'))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2, 2)))
#第三个卷积层,16个卷积核,每个卷积核大小3*3
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(16, 3, 3, border_mode='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
#全连接层,先将前一层输出的二维特征图flatten为一维的。
#Dense就是隐藏层。16就是上一层输出的特征图个数。4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4
#全连接有128个神经元节点,初始化方式为normal
model.add(Flatten())
model.add(Dense(128, init='normal'))
model.add(Activation('tanh'))
#Softmax分类,输出是10类别
model.add(Dense(10, init='normal'))
model.add(Activation('softmax'))
#############
#开始训练模型
##############
#使用SGD + momentum
#model.compile里的参数loss就是损失函数(目标函数)
sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])
#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.
#数据经过随机打乱shuffle=True。verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。
#validation_split=0.2,将20%的数据作为验证集。
model.fit(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)
"""
#使用data augmentation的方法
#一些参数和调用的方法,请看文档
datagen = ImageDataGenerator(
featurewise_center=True, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=True, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.2, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(data)
for e in range(nb_epoch):
print('-'*40)
print('Epoch', e)
print('-'*40)
print("Training...")
# batch train with realtime data augmentation
progbar = generic_utils.Progbar(data.shape[0])
for X_batch, Y_batch in datagen.flow(data, label):
loss,accuracy = model.train(X_batch, Y_batch,accuracy=True)
progbar.add(X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )
"""
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)