用Python怎么做量化投资

用Python怎么做量化投资,第1张

本文将会讲解量化投资过程中的基本流程,量化投资无非这几个流程,数据输入------策略书写------回测输出

其中策略书写部分还涉及到编程语言的选择,如果不想苦恼数据输入和回测输出的话,还败洞要选择回测平台。

一、数据

首先,必须是数据,数据是量化投资的基础

如何得到数据?

Wind:数据来源的最全的还是Wind,但是要付费,学生可以有免费试用的机会,之后还会和大家分享一下怎样才Wind里摘取数据,Wind有很多软雀枯派件的借口,Excel,Matlab,Python,C++。

预测者网:不经意间发现,一个免费提供股票数据网站 预测者网,下载的是CSV格式

TB交易开拓者:Tradeblazer,感谢@孙存浩提供数据源

TuShare:TuShare -财经数据接口包,基于Python的财经数据包,利用Python进行摘取

如何存储数据?

Mysql

如何预处理数据?

空值处理:利用DataFrame的fill.na()函数,将空值(Nan)替换成列的平均数、中位数或者众数

数据标准化

数据如何分类?

行情数据

财务数据

宏观数据

二、计算语言&软件

已经有很多人在网上询问过该选择什么语言?笔者一开始用的是matlab,但最终选择了python

python:库很多,只有你找不到的,没有你想不到,和量化这块结合比较紧密的有:

Numpy&Scipy:科学计算库,矩阵计算

Pandas:金融数据分顷贺析神器,原AQR资本员工写的一个库,处理时间序列的标配

Matplotlib:画图库

scikit-learn:机器学习库

statsmodels:统计分析模块

TuShare:免费、开源的python财经数据接口包

Zipline:回测系统

TaLib:技术指标库

matlab:主要是矩阵运算、科学运算这一块很强大,主要有优点是WorkSpace变量可视化

python的Numpy+Scipy两个库完全可以替代Matlab的矩阵运算

Matplotlib完克Matlab的画图功能

python还有很多其他的功能

pycharm(python的一款IDE)有很棒的调试功能,能代替Matlab的WorkSpace变量可视化

推荐的python学习文档和书籍

关于python的基础,建议廖雪峰Python 2.7教程,适合于没有程序基础的人来先看,涉及到python的基本数据类型、循环语句、条件语句、函数、类与对象、文件读写等很重要的基础知识。

涉及到数据运算的话,其实基础教程没什么应用,python各类包都帮你写好了,最好的学习资料还是它的官方文档,文档中的不仅有API,还会有写实例教程

pandas文档

statsmodels文档

scipy和numpy文档

matplotlib文档

TuShare文档

第二,推荐《利用Python进行数据分析》,pandas的开发初衷就是用来处理金融数据的

三、回测框架和网站

两个开源的回测框架

PyAlgoTrade - Algorithmic Trading

Zipline, a Pythonic Algorithmic Trading Library

么以下我就以程序语言的角度来回答

当然如果已经会了某些语言,那你可以使用熟悉的语言去找网上的学习资源会比较快

如果没有特别熟悉的语言,或者是愿意多学一种非常好用的语言

我的建议是学习Python

我从以下几点来分别说明

平台资源

国内外使用Python做云端回测以及运算的免费平台相当的多,例如有 宽客在线,发明者量化,优矿, 等等不胜枚举,可以使用平台的支持以及社区的互相帮助来学习

容易学习

在编程领域里面有些名言例如: Python是可执行的伪代码人生苦短,我用拍厅python.都是在说明python的容易上手程度

机器学习

Google的开源深度学习框架 TensorFlow

在现有的资料课银镇学领域里面支援Python的库锋贺粗跟资源也是最丰富的,等于可以让机器学习的几万行代码轻松在你的交易策略里面调用

国内资源

VNPY:可以提供下单,套利,跨平台套利,跨市场套利等等

有Tushare可以轻松的下载数据资料

综合以上所说,"目前的环境底下" 我推荐Python. (推荐直接下载 Anaconda的集成开发环境)

Matlab是一个高级的矩阵/阵列语言,它包含控制语句、函数、数据结构、输入和输出和面向对象编程特点。用户可以在命令窗口中将输入语句与执行命令同步,也可以先编写好一个较大的复杂的应用程序(M文件)后再埋卜袜一起运行。新版本的MATLAB语言是基于最为流行的C++语言基础上的,因此语法特征与C++语言极弯激为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式。使之更利于非计算机专业的科技人员使用。而且这种语言可移植性好、可拓展性极强,这也是MATLAB能够深弊差入到科学研究及工程计算各个领域的重要原因。

温馨提示:以上解释仅供参考。

应答时间:2021-10-09,最新业务变化请以平安银行官网公布为准。

[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~

https://b.pingan.com.cn/paim/iknow/index.html


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12451542.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-25
下一篇 2023-05-25

发表评论

登录后才能评论

评论列表(0条)

保存