傅里叶变换用C语言程序怎么实现?

傅里叶变换用C语言程序怎么实现?,第1张

#include <math.h>

#include <stdio.h>

#define N 8

void kkfft(double pr[], double pi[], int n, int k, double fr[], double fi[], int l, int il)

void main()

{

double xr[N],xi[N],Yr[N],Yi[N],l=0,il=0

int i,j,n=N,k=3

for(i=0i<Ni++)

{

xr[i]=i

xi[i]=0

}

printf("------FFT------\n"旁此)

l=0

kkfft(xr,xi,n,k,Yr,Yi,l,il)

for(i=0i<Ni++)

{

printf("%-11lf + j* %-11lf\n",Yr[i],Yi[i])

}

printf("-----DFFT-------\n")

l=1

kkfft(Yr,Yi,n,k,xr,xi,l,il)

for(i=0i<Ni++)

{

printf("%-11lf + j* %-11lf\谨伍n"祥启或,xr[i],xi[i])

}

getch()

}

void kkfft(double pr[], double pi[], int n, int k, double fr[], double fi[], int l, int il)

{

int it,m,is,i,j,nv,l0

double p,q,s,vr,vi,poddr,poddi

for (it=0it<=n-1it++)

{

m = it

is = 0

for(i=0i<=k-1i++)

{

j = m/2

is = 2*is+(m-2*j)

m = j

}

fr[it] = pr[is]

fi[it] = pi[is]

}

pr[0] = 1.0

pi[0] = 0.0

p = 6.283185306/(1.0*n)

pr[1] = cos(p)

pi[1] = -sin(p)

if (l!=0)

pi[1]=-pi[1]

for (i=2i<=n-1i++)

{

p = pr[i-1]*pr[1]

q = pi[i-1]*pi[1]

s = (pr[i-1]+pi[i-1])*(pr[1]+pi[1])

pr[i] = p-q

pi[i] = s-p-q

}

for (it=0it<=n-2it=it+2)

{

vr = fr[it]

vi = fi[it]

fr[it] = vr+fr[it+1]

fi[it] = vi+fi[it+1]

fr[it+1] = vr-fr[it+1]

fi[it+1] = vi-fi[it+1]

}

m = n/2

nv = 2

for (l0=k-2l0>=0l0--)

{

m = m/2

nv = 2*nv

for(it=0it<=(m-1)*nvit=it+nv)

for (j=0j<=(nv/2)-1j++)

{

p = pr[m*j]*fr[it+j+nv/2]

q = pi[m*j]*fi[it+j+nv/2]

s = pr[m*j]+pi[m*j]

s = s*(fr[it+j+nv/2]+fi[it+j+nv/2])

poddr = p-q

poddi = s-p-q

fr[it+j+nv/2] = fr[it+j]-poddr

fi[it+j+nv/2] = fi[it+j]-poddi

fr[it+j] = fr[it+j]+poddr

fi[it+j] = fi[it+j]+poddi

}

}

/*逆傅立叶变换*/

if(l!=0)

{

for(i=0i<=n-1i++)

{

fr[i] = fr[i]/(1.0*n)

fi[i] = fi[i]/(1.0*n)

}

}

/*是否计算模和相角*/

if(il!=0)

{

for(i=0i<=n-1i++)

{

pr[i] = sqrt(fr[i]*fr[i]+fi[i]*fi[i])

if(fabs(fr[i])<0.000001*fabs(fi[i]))

{

if ((fi[i]*fr[i])>0)

pi[i] = 90.0

else

pi[i] = -90.0

}

else

pi[i] = atan(fi[i]/fr[i])*360.0/6.283185306

}

}

return

}

这是我写的1024点的快速傅里叶变换程序,下面有验证,你把数组

double

A[2049]={0}

double

B[1100]={0}

double

powerA[1025]={0}

改成

A[256]={0}

B[130]={0}

power[129]={0}就行了,

void

FFT(double

data[],

int

nn,

int

isign)

的程序可以针对任何点数,只要是2的n次方

具体程序如下:

#include

<iostream.h>

#include

"math.h"

#include<stdio.h>

#include<string.h>

#include

<stdlib.h>

#include

<fstream.h>

#include

<afx.h>

void

FFT(double

data[],

int

nn,

int

isign)

{

//复数的快速傅里叶变换

int

n,j,i,m,mmax,istep

double

tempr,tempi,theta,wpr,wpi,wr,wi,wtemp

n

=

2

*

nn

j

=

1

for

(i

=

1

i<=n

i=i+2)

//这个循环进行的是码位倒置。

{

if(

j

>

i)

{

tempr

=

data[j]

tempi

=

data[j

+

1]

data[j]

=

data[i]

data[j

+

1]

=

data[i

+

1]

data[i]

=

tempr

data[i

+

1]

=

tempi

}

m

=

n

/

2

while

(m

>=

2

&&

j

>

m)

{

j

=

j

-

m

m

=

m

/

2

}

j

=

j

+

m

}

mmax

=

2

while(

n

>

mmax

)

{

istep

=

2

*

mmax

//这里表示一次的数字的变化。也体现了级数,若第一级时,也就是书是的第0级,其为两个虚数,所以对应数组应该增加4,这样就可以进入下一组运算

theta

=

-6.28318530717959

/

(isign

*

mmax)

wpr

=

-2.0

*

sin(0.5

*

theta)*sin(0.5

*

theta)

wpi

=

sin(theta)

wr

=

1.0

wi

=

0.0

for(

m

=

1

m<=mmax

m=m+2)

{

for

(i

=

m

i<=n

i=i+istep)

{

j

=

i

+

mmax

tempr=double(wr)*data[j]-double(wi)*data[j+1]//这两句表示蝶形因子的下一个数乘以W因子所得的实部和虚部。

tempi=double(wr)*data[j+1]+double(wi)*data[j]

data[j]

=

data[i]

-

tempr

//蝶形单元计算后下面单元的实部,下面为虚部,注意其变换之后的数组序号与书上蝶形单元是一致的

data[j

+

1]

=

data[i

+

1]

-

tempi

data[i]

=

data[i]

+

tempr

data[i

+

1]

=

data[i

+

1]

+

tempi

}

wtemp

=

wr

wr

=

wr

*

wpr

-

wi

*

wpi

+

wr

wi

=

wi

*

wpr

+

wtemp

*

wpi

+

wi

}

mmax

=

istep

}

}

void

main()

{

//本程序已经和MATLAB运算结果对比,准确无误,需要注意的的是,计算告扒中数组都是从1开始取得,丢弃了A[0]等数据

double

A[2049]={0}

double

B[1100]={0}

double

powerA[1025]={0}

char

line[50]

char

dataA[20],

dataB[20]

int

ij

char

ch1[3]="巧带\t"

char

ch2[3]="\n"

int

strl1,strl2

CString

str1,str2

ij=1

//********************************读入文件data1024.txt中的数据,

其中的数据格式见该文件

FILE

*fp

=

fopen("data1024.txt","r")

if(!fp)

{

cout<<"Open

file

is

failing!"<<endl

return

}

while(!feof(fp))

//feof(fp)有两个返回值:如果遇到文件结束,函数feof(fp)的值为1,否则为0。

{

memset(line,0,50)

//清空为0

memset(dataA,0,20)

memset(dataB,0,20)

fgets(line,50,fp)

//函数的功能是从fp所指文件中读入n-1个字符放入line为起始地址的空间内

sscanf(line,

"%s%s",

dataA,

dataB)

//我同时读入孝友芦了两列值,但你要求1024个,那么我就只用了第一列的1024个值

//dataA读入第一列,dataB读入第二列

B[ij]=atof(dataA)

//将字符型的dataA值转化为float型

ij++

}

for

(int

mm=1mm<1025mm++)//A[2*mm-1]是实部,A[2*mm]是虚部,当只要输入实数时,那么保证虚部A[mm*2]为零即可

{

A[2*mm-1]=B[mm]

A[2*mm]=0

}

//*******************************************正式计算FFT

FFT(A,1024,1)

//********************************************写入数据到workout.txt文件中

for

(int

k=1k<2049k=k+2)

{

powerA[(k+1)/2]=sqrt(pow(A[k],2.0)+pow(A[k+1],2.0))//求功率谱

FILE

*pFile=fopen("workout.txt","a+")

//?a+只能在文件最后补充,光标在结尾。没有则创建

memset(ch1,0,15)

str1.Format("%.4f",powerA[(k+1)/2])

if

(A[k+1]>=0)

str2.Format("%d\t%6.4f%s%6.4f

%s",(k+1)/2,A[k],"+",A[k+1],"i")//保存fft计算的频谱,是复数频谱

else

str2.Format("%d\t%6.4f%6.4f

%s",(k+1)/2,A[k],A[k+1],"i")

strl1=strlen(str1)

strl2=strlen(str2)

//

法:fwrite(buffer,size,count,fp)

//

buffer:是一个指针,对fwrite来说,是要输出数据的地址。

//

size:要写入的字节数;

//

count:要进行写入size字节的数据项的个数;

//

fp:目标文件指针。

fwrite(str2,1,strl2,pFile)

fwrite(ch1,1,3,pFile)

fwrite(ch1,1,3,pFile)

fwrite(str1,1,strl1,pFile)

fwrite(ch2,1,3,pFile)

fclose(pFile)

}

cout<<"计算完毕,到fft_test\workout.txt查看结果"<<endl

}

如果你只对[-0.5,0.5]之间的信号进行采样,那么你采的将会是常数1,这样做出的FFT应该是一个delta函数,也就是一个冲击,所以你应该采包括外边的值才能够反映出信号的特性。

这样结果没有任何问题,问题是你采样的值太少了,换句话说就是你采样的信号反映不出这是个门函数的特性来。

matlab里边是可以衫改利用单边函数表示门函数的。你可以跑一下下边的程序,看一下门函数:

f(x)=heaviside(x+0.5)-heaviside(x-0.5)

ezplot(fx,[-1,1])

而且matlab里边还有对符号表达式做傅里叶变换的函数fourier(),用法如下:

FX=fourier(fx)

ezplot(FX,[-30,30])

title('fourier transformation of fx')

而如果你非想用fft做,就必须加大采样点数,尤其是门之外的部分,才能够完整的描述信号。

函数(function)表示每个输入值对应唯一输出值的一种对应关系。这种或乎判关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。函数f中对应输入值的输出值x的标准符号为f(x)。包含某个函数所有的输入值的集合被称作这个函数的定义域,包含所有的输出值的集合被称作值域。若先定义映射的概念,可以简单定义函数为,定义在非空数集之间的映射称为函数。

傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分顷枣的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12451750.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-25
下一篇 2023-05-25

发表评论

登录后才能评论

评论列表(0条)

保存