竖式不需要列的,需要写横式。
估算方法如下:
【四舍五入】
例题:
2的算数平方根(保留到0.01)
解:根凳没号2=1.414.....≈1.41
【纤睁进一法】
例题:一支笔2.6元,四支需多少钱(保留到整数)
解:2.6×4=10.4元≈11元
如果四舍五入的话是10元,是不够的,所以是要进上去的
【去尾法】
例题:有20元,买3元一毁粗岁支的笔,可买多少支?
解:20÷3=6.6666....支≈6支
如果四舍五入的话是7支,买不到,所以是要去掉的
估算的方法如下:1、凑整的方法:如凑成一个整千、整百、整十的数。
2、取一个中间数:如53、57、51
和59这四个数求和,这些数都很接近35,有的比55多一点激敏,有的比55少一点,就取一个中间数55,直接用55×4,就大约地计算出了这几个数相加的结果。
3、用特殊的数据特点进行估数:如126
×
8,就可以想到125
×
8,125的8倍,就得到1000。
4、寻找区间,也就是说叫寻找它的范围
,也叫做去尾进一:以278为例,去尾就是只看首位,那么只看首位的时候,估得的结果就是它至少是200;进一就是首位加一,这样就是它最多可能是300,这样得到一个范围,就是寻找它的液铅肆区间范围;
5、大小协调:两个数,一个数
往大了估,一个数往小了估,或者一个数估一个数不估。
6、先估后调。
7、利用乘法口诀凑数:这种方法一般用于除法的估算,一般用除数乘一个整十数、整百数或整百整十数,如果乘积最接近被除数,则这个数就是除法估算的商。如
358÷6
,用除数
6
乘整十闹轿数
60
,其积
360
最接近被除数
358
,那么整十数
60
即是所求的商。
解答高考选择题既要求准确破解,又要快速选择,正如高冠教育(ggedu21)明确指出的,应“多一点想的,少一点算的”。我们都会有算错的时候,怎样才不会算错呢?“不算就不会算错” 因此,在解答时应该突出一个"选"字,尽量减少书写解题过程,在对照选择支的同时,多方考虑间接解法,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取。我们不要给任何“方法”做出限定,重要的是这种解答的思想方式。
一、高考数学选择题命题规律搭亩如下:
1、函数与导数
2—3个小题,1个大题,客观题主要以考查函数的基本性质、函数图像及变换、函数零点、导数的几何意义、定积分等为主,也有可能与不等式等知识综合考查解答题主要是以导数为工具解决函数、方程、不等式等的应用问题。
2.三角函数与平面向量
小题一般主要考查三角函数的图知桥森像与性质、利用诱导公式与和差角公式、倍角公式、正余弦定理求值化简、平面向量的基本性质与运算.大题主要以正、余弦定理为知识框架,以三角形为依托进行考查(注意在实际问题中的考查)或向量与三角结合考查三角函数化简求值以及图像与性质.另外向量也可能与解析等知识结合考查.
3.数列
2个小题或1个大题,小题以考查数列概念、性质、通项公式、前n项和公式等内容为主,属中低档题解答题以考查等差(比)数列通项公式、求和公式,错位相减求和、简单递推为主.
4.解析几何
2小1大,小题一般主要以考查直线、圆及圆锥曲线的性质为主,一般结合定义,借消掘助于图形可容易求解,大题一般以直线与圆锥曲线位置关系为命题背景,并结合函数、方程、数列、不等式、导数、平面向量等知识,考查求轨迹方程问题,探求有关曲线性质,求参数范围,求最值与定值,探求存在性等问题.另外要注意对二次曲线之间结合的考查,比如椭圆与抛物线,椭圆与圆等.
5.立体几何
2小1大,小题必考三视图,一般侧重于线与线、线与面、面与面的位置的关系以及空间几何体中的空间角、距离、面积、体积的计算的考查,另外特别注意对球的组合体的考查.解答题以平行、垂直、夹角、距离等为考查目标.几何体以四棱柱、四棱锥、三棱柱、三棱锥等为主。
6.概率与统计
2小1大,小题一般主要考查频率分布直方图、茎叶图、样本的数字特征、独立性检验、几何概型和古典概型、抽样(特别是分层抽样)、排列组合、二项式定理第几个重要的分布.解答题考查点比较固定,一般考查离散型随机变量的分布列、期望和方差.仍然侧重于考查与现实生活联系紧密的应用题,体现数学的应用性.
7.不等式
小题一般考查不等式的基本性质及解法(一般与其他知识联系,比如集合、分段函数等)、基本不等式性质应用、线性规划解答题一般以其他知识(比如数列、解析几何及函数等)为主要背景,不等式为工具进行综合考查,一般较难。
8.算法与推理
程序框图每年出现一个,一般与函数、数列等知识结合,难度一般推理题偶尔会出现一个。
二、高考数学选择题6大答题技巧
答题口诀:
(1)、小题不能大做
(2)、不要不管选项
(3)、能定性分析就不要定量计算
(4)、能特值法就不要常规计算
(5)、能间接解就不要直接解
(6)、能排除的先排除缩小选择范围
(7)、分析计算一半后直接选选项
(8)、三个相似选相似
1、特殊值法
方法思想:通过取特值的方式提高解题速度,题中的一般情况必须满足我们取值的特殊情况,因而我们根据题意选取适当的特值帮助我们排除错误答案,选取正确选项。
2、估算法
方法思想:当选项差距较大,且没有合适的解题思路时我们可以通过适当的放大或者缩小部分数据估算出答案的大概范围或者近似值,然后选取与估算值最接近的选项。
[注意]:带根号比较大小或者寻找近似值时要平方去比较这样可以减少误差。
3、逆代法
方法思想:充分发挥选项的作用,观察选项特点,制定解题的特殊方案,可以大大的简化解题步骤,节省时间,做选择题我们切记不要不管选项.
4、特殊情况分析法
方法思想:当题中没有限定情况时,我们考虑问题可以从最特殊的情况开始分析,特殊情况往往可以帮助我们排除部分选项,然后分析从特殊情况到一般情况的[过度](变大、变小)等选出正确答案。
5、算法简化
方法思想:定性分析代替定量计算,根据题型结构简化计算过程,在一定程度上帮助我们加快了解题速度。
通过下面几个例题的讲解,我们不仅要掌握方法,更重要的是要去体会这种思想,做到活学活用。
6、特殊推论
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)