一,对于量化交易的开发者,
1,程序的开发能力,编程能力
2,没有完善的交易系统
3,懂程序的人不懂交易,懂交易的人又不懂编程,如果两人合作开发,因为怕技术外泄的原因,双方都有所保留,以致合作难以达到好的境界,
4,完整的数据,量化交易的程序开发,有赖于 历史 数据的测试,可市场里不是每一种品种都有足够的数据可以提供来测试,例如新上市的股票或者期货合约,
二,对于量化交易的使用者
1,大多使用者都是用别人开发的成果,导致没有足够的信任和信心,赚钱还好,亏钱就难以坚持
2,量化交易程序化交易往往都依赖于很多数据参数,使用者很难把握好参数的设置
3,不同的级别会有不同的效果,使用者很难选择最游歼佳级别
4,市场的参与主体不断在发生演变进化,导致市场也跟随着演变,固化的量化交易程序,不一定能适应不断向前走的市场
以上希望能够帮到你
痛点1:好的量化交易投研工具
目前市场上好的量化交易平台不多,大多数只是作为投研学习用得平台,真正能保证 安全和实盘的真心不多,现国内高端的量化交易平台能够实现高质量的清洗数据、策略开发、回测、仿真以及能够实盘仅有少数。
痛点2:基于 历史 数据回测
由于量化策略是基于 历史 数据分析的,基础的量化模型在设计之初都是经过至少三年以上的 历史 走势追溯,即构建量化模型的投资周期都是长线的。量化因子的互相作用及平衡也是基于长期的,短期市场的波动尽管会对量化因子产生影响,但短期影响并不会在长期投资中产生决定性因素。一旦当前市场表现和过去出现较大差别,那么,基金业绩表现肯定就会不好。
痛点3:策略同质化现象严重
当前的公募市场上,很难见到精妙的、具有独特竞争力的量化策略,不少策略趋同,大量相似量化策略的登堂入室,让其收益回归平均甚至难以达到平均水平。
一些基金为了避免出现持仓过于集中在中小创的情况,它们会把大盘股强制配进去,做成一个中性策略,该做法可有效降低单一风险,使得在风格切换中,避免净值大幅回撤,但代价当然也是整体预期收益降低,比如在中小创风口来临时,采用这种方法的基金业绩就会逊色很多。
当然,在策略贫乏的市场环境中也有量化基金守正出奇,闯出了一片新天地,上投摩根阿尔法就是典型代表。在今年风格骤变的行情中,该基金以近 19% 的收益率领跑主动型量化基金,其秘诀就在于:采用了哑铃式投资技术,同步以 " 成长 " 与 " 价值 " 双重量化指标进行股票选择。这样一来,就克服了单一风格投资所带来的局限性。
哑铃式投资技术 ( Barbell Approach ) 是目前国际市场上较为成熟的一种投资方法,其基本 *** 作思想在于同时投资于两类风格差异较大的产品,构建的投资组合具有两种产品的某些优点,同时能够回避某些市场波动带来的损失。
当前,不少基金公司已经意识到,变则通握磨简,不少机构正在动态调整量化策略。拓展策略的延展性、修改量化因子等,已经成为不少量化产品的选择。
痛点4:受策略局限性的制段裤约
目前,市场上的公募量化基金普遍采用的是阿尔法策略,有效的套利、做空等多策略都不能灵活运用,这导致量化基金策略偏向于做多。而私募量化基金,因其策略的多样性,使其更容易适应市场变化。
此前,股指期货 " 松绑 " 所传递出的信号,从中长期看,对量化基金来说绝对是利好。而随着资本市场未来上市更多的金融衍生品,将有效解决股市单边市的问题,量化策略可配置的品种也将越来越丰富,届时量化投资或将大有可为。
作为市场相对成熟的美国,导致近期量化策略,尤其是 CTA 策略 " 失效 " 的主因究竟又是什么?对冲基金 Quest Partners LLC 的联合创始人兼首席投资官 Nigol Koulajian 给出了答案。他表示:" 已经适应了这个市场环境的 CTA 在越来越倾向于长期交易,它们的持仓规模在增大,并且很多投资者运用的是同样的策略,一旦出现趋势逆转,对市场的影响将是巨大的。"
量化交易一般会经过海量数据仿真测试和模拟 *** 作等手段进行检验,并依据一定的风险管理算法进行仓位和资金配置,实现风险最小化和收益最大化,但往往也会存在一定的潜在风险,具体包括:
1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败唯族,如交易流动性,价格波动幅度,价格波指吵弊动频率等,而这一点是目前量化交易难以克服的。
2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生碰灶爆仓现象。
3、网络中断,硬件故障也可能对量化交易产生影响。
4、同质模型产生竞争交易现象导致的风险。
5、单一投资品种导致的不可预测风险。
为规避或减小量化交易存在的潜在风险,可采取的策略有:保证历史数据的完整性;在线调整模型参数;在线选择模型类型;风险在线监测和规避等。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)