编写程序求出首地址为DAT的十六个带符号字数据中的最大奇数,并将这个数存到DAT1单元中 用汇编

编写程序求出首地址为DAT的十六个带符号字数据中的最大奇数,并将这个数存到DAT1单元中 用汇编,第1张

m,int k,int xx[]),该函数的功能是:将大于整数m且紧靠m的k个素数存入数组xx传回。

最后调用函数writeDat()读取10组数据,分别得出结果且把结果输出到文件out.dat中。

部分源程序存在文件prog1.c中。

例如:若输入17 5 则应输出:19,23,29,31,37。

请勿改动主函数main()和写函数writeDat()的内容。

int isP(int m)

{

int i

for(i=2i<mi++)

if(m % i==0)return 0

return 1

}

void num(int m,int k,int xx[])

{ int s=0

for(m=m+1k>0m++)

if(isP(m))

}

*********************************

题目2

已知数据文件IN.DAT中存有200个四位数,并已调用读函数readDat()把这些数存入数组a中,请考生编制一函数jsVal(),其功能是:如果四位数各位上的数字均是0或2或4或6或8,则统计出满足此条件的个数cnt,并把这些四位数按从大到小的顺序存入数组b中。最后main( )函数调用写函数writeDat()把结果cnt以及数组b中符合条件的四位数输出到OUT.DAT文件中。

注意:部分源程序存在文件prog1.c中。

程序中已定义数组:a[200],b[200],已定义变量:cnt

请勿改动数据文件IN.DAT中的任何数据、主函数main()、读函数readDat()和写函数writeDat()的内容。

void jsVal()

{ int i,j,qw,bw,sw,gw

for(i=0i<MAXi++)

{ qw=a[i]/1000bw=a[i]/100%10

sw=a[i]%100/10gw=a[i]%10

if(qw&&qw%2==0&&bw%2==0&&sw%2==0&&gw%2==0) b[cnt++]=a[i]

}

for(i=0i<cnt-1i++)

for(j=i+1j<cntj++)

if(b[i]<b[j])

}

*********************************★题目3

函数ReadDat( )实现从文件IN.DAT中读取一篇英文文章存入到字符串数组xx中;请编制函数StrOR( ),其函数的功能是:以行为单位依次把字符串中所有闷卜小写字母o左边的字符串内容移到该串的右边存放,然后把小写字母o删除,余下的字符串内容移到已处理字符串的左边存放,蚂备穗之后把已处理的字符串仍按行重新存入字符串数组xx中。最后main()函数调用函数WriteDat()把结果xx输出到文滚斗件OUT5.DAT中。

原始数据文件存放的格式是:每行的宽度均小于80个字符,含标点符号和空格。

注意:部分源程序存放在文件prog1.c中。

请勿改动主函数main()、读数据函数ReadDat()和输出数据函数WriteDat()的内容。

void StrOR(void)

{int i,righto,j,s,k

char tem[80]

for(i=0i<maxlinei++)

for(j=strlen(xx[i])-1j>=0j--)

{ k=0memset(tem,0,80)

if(xx[i][j]=='o')

{righto=j

for(s=righto+1s<strlen(xx[i])s++)

tem[k++]=xx[i][s]

for(s=0s<rightos++)

if(xx[i][s]!='o')

tem[k++]=xx[i][s]

strcpy(xx[i],tem)

}

else continue

}

} ★题目4

函数ReadDat()实现从文件IN.DAT中读取一篇英文文章存入到字符串数组xx中,请编制函数StrOL(),其函数的功能是:以行为单位对行中以空格或标点符号为分隔的所有单词进行倒排。最后把已处理的字符串(应不含标点符号)仍按行重新存入字符串数组xx中,最后调用函数writeDat()把结果xx输出到文件OUT6.DAT中。

例如:原文:You He Me

I am a student.

结果:Me He You

student a am I

原始数据文件存放的格式是:每行的宽度均小于80个字符,含标点符号和空格。

部分源程序存在文件prog1.c中。

请勿改动主函数main()、读数据函数ReadDat()和输出数据函数writeDat()的内容。

void StrOL(void)

{ int i,j,k,s,m,strl

char str[80]

for(i=0i<maxlinei++)

{ strl=strlen(xx[i])

memset(str,0,80)

s=k=0

for(j=strl-1j>=0j--)

{ if(isalpha(xx[i][j])) k++

else { for(m=1m<=km++)

str[s++]=xx[i][j+m]

k=0

}

if(!isalpha(xx[i][j]))

str[s++]=' '

}

for(m=1m<=km++)

str[s++]=xx[i][j+m]

str[s]='\0'

strcpy(xx[i],str) }

}

**********************************

☆题目5(整数排序题)

在文件in.dat中有200个正整数,且每个数均在1000至9999之间。函数ReadDat()读取这200个数存放到数组aa中。请编制函数jsSort(),其函数的功能是:要求按每个数的后三位的大小进行升序排列,然后取出满足此条件的前10个数依次存入数组bb中,如果后三位的数值相等,则按原先的数值进行降序排列。最后调用函数WriteDat()把结果bb输出到文件out.dat中。

例:处理前 6012 5099 9012 7025 8088

处理后 9012 6012 7025 8088 5099

部分源程序存在文件prog1.c中。

请勿改动主函数main()、读数据函数ReadDat()和输出数据函数WriteDat()的内容。

void jsSort()

{

int i,j,data

for(i=0i<199i++)

for(j=i+1j<200j++) if(aa[i]%1000>aa[j]%1000||aa[i]%1000==aa[j]%1000&&aa[i]<aa[j])

for(i=0i<10i++)

bb[i]=aa[i]

}

*********************************

☆题目6 正整数排序

在文件in.dat中有200个正整数,且每个数均在1000至9999之间。函数ReadDat()读取这200个数存放到数组aa中。请编制函数jsSort(),其函数的功能是:要求按每个数的后三位的大小进行降序排列,然后取出满足此条件的前10个数依次存入数组b中,如果后三位的数值相等,则按原先的数值进行升序排列。最后调用函数WriteDat()把结果bb输出到文件out.dat中。

例:处理前 9012 5099 6012 7025 8088

处理后 5099 8088 7025 6012 9012

注意:部分源程序已给出。

请勿改动主函数main()、读数据函数ReadDat()和输出数据函数WriteDat()的内容。

void jsSort()

{

int i,j,data

for(i=0i<199i++)

for(j=i+1j<200j++)

if(aa[i]%1000<aa[j]%1000||aa[i]%1000==aa[j]%1000&&aa[i]>aa[j])

for(i=0i<10i++)

bb[i]=aa[i]

}

题目37(字符替换题)

函数ReadDat()实现从文件ENG.IN中读取一篇英文文章,存入到字符串数组xx中;请编制函数encryptChar(),按给定的替代关系对数组xx中的所有字符进行替代,仍存入数组xx的对应的位置上,最后调用函数WriteDat()把结果xx输出到文件PS7.DAT中。

替代关系:f(p)=p*11 mod 256(p是数组中某一个字符的ASCII值,f(p)是计算后新字符的ASCII值),如果原字符是大写字母或计算后f(p)值小于等于32,则该字符不变,否则将f(p)所对应的字符进行替代。

部分源程序存在文件prog1.c中。原始数据文件存放的格式是:每行的宽度均小于80个字符。

请勿改动主函数main()、读数据函数ReadDat()和输出数据函数WriteDat()的内容。

void encryptChar()

{ int i,j

for(i=0i<maxlinei++)

for(j=0j<strlen(xx[i])j++)

if(xx[i][j]*11%256<=32||xx[i][j]>='A'&&xx[i][j]<='Z') continue

else xx[i][j]=xx[i][j]*11%256

}

*******************************

★☆题目39(选票问题)

现有一个10个人100行的选票数据文件IN.DAT,其数据存放的格式是每条记录的长度均为10位,第一位表示第一个人的选中情况,第二位表示第二个人的选中情况,依此类推 :内容均为字符0和1,1表示此人被选中,0表示此人未被选中,全选或不选均为无效的选票。给定函数ReadDat()的功能是把选票数据读入到字符串数组xx中。请编制函数CountRs()来统计每个人的选票数并把得票数依次存入yy[0]到yy[9]中。把结果yy输出到文件OUT.DAT中。

部分源程序存在文件prog1.c中。

请勿改动主函数main()、读数据函数ReadDat()和输出数据函数writeDat()的内容。

void CountRs(void)

{ int i,j,count

for(i=0i<100i++)

{ count=0

for(j=0j<10j++)

if(xx[i][j]=='1') count++

if(count==0||count==10) continue

for(j=0j<10j++)

if(xx[i][j]=='1') yy[j]++

}

}

******************************

☆题目41(SIX/NINE问题)

下列程序prog1.c的功能是:计算出自然数SIX和NINE,它们满足的条件是SIX+SIX+SIX=NINE+NINE的个数cnt以及满足此条件所有的SIX与NINE的和SUM。请编写函数countValue()实现程序的要求,最后调用函数writeDat()把结果cnt和sum,输出到文件OUT15.DAT中。

其中的S,I,X,N,E各代表一个十进制数字。

部分源程序存在文件prog1.c中。

请勿改动主函数main()和输出数据函数writeDat()的内容。

#include <stdio.h>

int cnt,sum

void countValue()

{ int s,i,x,n,e,six,nine

for(s=1s<10s++)

for(i=0i<10i++)

for(x=0x<10x++)

for(n=1n<10n++)

for(e=0e<10e++)

{ six=s*100+i*10+x

nine=n*1000+i*100+n*10+e

if(3*six==2*nine)

}

}

******************************

题目55(素数统计排序题)

已知数据文件in.dat中存有300个四位数,并已调用读函数ReadDat()把这些数存入数组a中,请编制一函数jsValue(),其功能是:求出所有这些四位数是素数的个数cnt,再把所有满足此条件的四位数依次存入数组b中,然后对数组b的四位数按从小到大的顺序进行排序,最后调用写函数writeDat()把结果输出到out.dat文件。

例如:5591是素数,则该数满足条件存入数组b中,且个数cnt=cnt+1。9812是非素数,则该数不满足条件忽略。

部分源程序存在文件prog1.c中。

程序中已定义数组:a[300],b[300],已定义变量:cnt

请勿改动主函数main()、读函数ReadDat()和写函数writeDat()的内容。

int isP(int m){

int i

for(i=2i<mi++)

if(m%i==0)return 0

return 1

}

jsValue()

{int i,j,value

for(i=0i<300i++)

if(isP(a[i])) b[cnt++]=a[i]

for(i=0i<cnt-1i++)

for(j=i+1j<cntj++)

if(b[i]>b[j])

}

*******************************

题目56(字符替换题)

函数ReadDat()实现从文件ENG.IN中读取一篇英文文章,存入到字符串数组xx中;请编制函数encryptChar(),按给定的替代关系对数组xx中的所有字符进行替代,仍存入数组xx的对应的位置上,最后调用函数WriteDat()把结果xx输出到文件PS5.DAT中。

替代关系:f(p)=p*11mod 256 (p是数组中某一个字符的ASCII值,f(p)是计算后新字符的ASCII值),如果计算后f(p)值小于等于32或f(p)对应的字符是小写字母,则该字符不变,否则将f(p)所对应的字符进行替代。

部分源程序存在文件prog1.c中。原始数据文件存放的格式是:每行的宽度均小于80个字符。

请勿改动主函数main()、读数据函数ReadDat()和输出数据函数WriteDat()的内容。

void encryptChar()

{ int i,j

for(i=0i<maxlinei++)

for(j=0j<strlen(xx[i])j++)

if(xx[i][j]*11%256<=32||xx[i][j]*11%256>='a'&&xx[i][j]*11%256<='z') continue

else xx[i][j]=xx[i][j]*11%256

}

区块链技术不断发展壮此掘亮大,以适应金融市场森宽和互联网市场需求,并为其持续提供数字解决方案。通过在Web3技术中集成区块链技术,我们正在开发去中心化金融(DeFi)服务和去中心化应用程序(DApp),以增强数字生态系统。

专家预计,通过整合区块链技术和解决方案,银行每年可以节约120亿美元甚至更多。联合国还运用区块链技术来解决有关侵犯人权的问题、资助国际人道主义发展、并推动环保型区块链生态系统创新。

区块链发展趋势的一大挑战是这些趋势都是转瞬即逝的,原因是该行业在不断发展。因此,一些企业和开发商经常会对某个区块链项目的发展存有疑问。但是,经过辛勤的研究和分析,我们发现以下四个项目具有成为“常青树”区块链发展趋势的潜力。更重要的是,这四个项目正积极为去中心化金融和去中心化应用程序行业的开发商提供区块链解决方案。

1

企业中的区块链应用

想要创建优质去中心化应用程序的开发人员可以通过Jelurida的旗舰区块链解决方案“未来币(NXT)和阿朵币(Ardor)”来构建满足市场需求的可扩展性应用程序。说的通俗一点,Jelurida 正在努力将实体公司和企业与区块链行业进行无缝衔接。想象一下,没有实际运用的区块链还是区块链吗?

未来币是世界上首个完全依赖权益证明(PoS)共识的开源区块链平台。权益证明是一种以拜占庭容错为基础的算法,能够消除工作量证明(PoW)模型中的计算损耗,并提高交易安全性。

开发人员可以利用未来币框架构建和保存自定义区块链解决方案,并为代币创建可靠交易所。另一方面,阿朵币的子链功能允许有关组织构建无需许可的区块链数字解决方案并运行智能合约。

通过运用这些解决方案和火链币(Ignis),Jelurida已取得了一些成功。和部分区块链公司不同,Jelurida已实现其所有发展路线里程碑,目前已在三大洲的数个国家开展业务。

目前,Jelurida有许多现实项目在其平台上运行,其中一个是Cycle4Value,该项目是一个环保型的 游戏 化系统,能够控制交通状况、改善公共卫生。

2

游戏 和非同质化代币发展

Enjin对于 游戏 和非同质化代币行业的区块链开发人员来说是另一项可喜的先进成果,这项成果为具有创造性的开发人员提供了创建下一代去中心化软件和应用程序的机会。Enjin为医疗、政治、金融和 娱乐 领域的现实项目提供支持,因向数百万用户提供区块链解决方案而自豪。该项目拥有近4500万的市场容量,已安装200多万个钱包,并创建超过10亿项资产。

基于Enjin构建的现实项目之一“Go! By Health Hero”是一个以未来币为基础的解决方案,能够促进与 健康 相关的项目和服务发展,目前这个项目颇受欢迎。其他项目还有微软的Azure Heroes、《失落的遗迹》以及面向 游戏 玩家的《腐蚀年代》。

目前,Enjin与新兴的未来币行业深度合作,预计随着该行业在未来进一步发展,Enjin将在该行业中扮演重要角色。

3

速度和数据安全性

当一个开发人员想要创建具有扩展性和可靠性的去中心化区块链服务时,速度和安全性是他需要考虑的基本因素。Elrond就做到了这一点,其一秒内可以处理1万多笔交易,比比特币和以太坊加起来的处理速度快100倍。

这是未来几年我们需要的一些“常青树”趋势。

Elrond采用自适应状态分片机制,支持快速验证和交易处理。和Jelurida一样,Elrond采用权益证明节约资源并提高交易安全性。

Elrond有9万多个活跃账户和大量开发项目,因此,其生态系统估值从1千万美元跃升至5亿美元也就不足为奇了。Elrond在大约30个国家都有业务,其客户中有超过115家公司和初创企业。

4

环保系统

Cudos是一个宽带区块链平台,通过整合全球开发人员和用户的计算资源来为区块链项目提供动力。该平台作为开发人员共享和出售共同资源的网络,能够在互联网上引领具有可靠性和扩展性的区块链项目。开发人员可以构建和发布去中心化散知应用程序,挖掘加密货币并分摊网络费用。

游戏 和非同质化代币开发商和市场,包括其他相关的区块链业务,可以利用Cudos框架创建优质安全的去中心化解决方案和产品。Cudos生态系统致力于为开发人员提供更便宜、更方便、可重复使用的环保型区块链解决方案;为组织提供以云计算为基础的区块链解决方案;将创新方案引入Web3框架中,允许开发人员创建下一代去中心化应用程序。

Cudos近期与以区块链为基础的碳信用公司ClimateTrade合作,以抵消其二氧化碳排放。目前,全球都受到气候变化的负面影响,企业和个人都有责任迅速减缓并最终逆转这种影响。

结语

致力于下一代区块链服务和业务的区块链平台应采取措施解决环境污染问题,从而为区块链数字解决方案创造一个生态友好的环境。

全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社

一、区块链共识机制的目标

区块链是什么?简单而言,区块链是一种去中心化的数据库,或可以叫作分布式账本(distributed ledger)。传统上所有的数据库都是中心化的,例如一间银行的账本就储存在银行的中心服务器里。中心化数据库的弊端是数据的安全及正确性全系于数据库运营方(即银行),因为任何能够访问中心化数据库的人(如银行职员或黑客)都可以破坏或修改其中的数据。

而区块链技术则容许数据库存放在全球成千上万的电脑上,每个人的账本通过点对点网络进行同步,网络中任渗庆何用户一旦增加一笔交易,交易信息将通过网络通知其他用户验证,记录到各自的账本中。区块链之所以得其名是因为它是由一个个包含交易信息的区块(block)从后向前有序链接起来的数据结构。

很多人对区块链的疑问是,如果每一个用户都拥有一个独立的账本,那么是否意味着可以在自己的账本上添加任意的交易信息,而成千上万个账本又如何保证记账的一致性? 解决记账一致性问题正是区块链共识机制的目标 。区块链共识机制旨在保证分布式系统里所有节点中的数据完全相同并且能够对某个提案(proposal)(例如是一项交易纪录)达成一致。然而分布式系统由于引入了多个节点,所以系统中会出现各种非常复杂的情况;随着节点数量的增加,节点失效或故障、节点之间的网络通信受到干扰甚至阻断等就变成了常见的问题,解决分布式系统中的各种边界条件和意外情况也增加了解决分布式一致性问题的难度。

区块链又可分为三种:

公有链:全世界任何人都可以随时进入系统中读取数据、发送可确认交易、竞争记账的区块链。公有链通常被认为是“完全去中心化“的,因为没有任何人或机构可以控制或篡改其中数据的读写。公有链一般会通过代币机制鼓励参与者竞争记账,来确保数据的安全性。

联盟链:联盟链是指有若干个机构共同参与管理的区块链。每个机构都运行着一个或多个节点,其中的数据只允许系统内不同的机构进行读写和发送交易,并且共同来记录交易数据。这类区块链被认为是“部分去中心化”。

私有链:指其写入权限是由某个组织和机构控制的区块链。参与节点的资格会被严格的限制,由于参与的节点是有限和可控的,因此私有链往往可以有极快的交易速度、更好的隐私保护、更低的交易成本、不容易被恶意攻击、并且能够做到身份认证等金融行业必须的要求。相比中心化数据库,私有链能够防止机构内单节点故意隐瞒或篡改数据。即使发生错误,也能够迅速发现来源,因此许多大型金融机构在目前更加倾向于使用私有链技术。

二、区块链共识机制的分类

解决分布式一致性问题的难度催生了数种共识机制,它们各有其优缺点,亦适用于不同的环境及问题。被众人常识的共识机制有:

l PoW(Proof of Work)工作量证明机制

l PoS(Proof of Stake)股权/权益证明机制

l DPoS(Delegated Proof of Stake)股份授权证明机制

l PBFT(Practical Byzantine Fault Tolerance)实用拜占庭容错算法

l DBFT(Delegated Byzantine Fault Tolerance)授权拜占庭容错算法

l SCP (Stellar Consensus Protocol ) 恒星共识协议

l RPCA(Ripple Protocol Consensus Algorithm)Ripple共识算法

l Pool验证池共识机制

(一)PoW(Proof of Work)工作量证明机制

1. 基本介绍

在该机制中,网络上的每一个节点都在使用SHA256哈希函数(hash function) 运算一个不断变化的区块头的哈希值 (hash sum)。 共识要求算出的值必须等于或小于某个给定的值。 在分布式网络中,所有的参与者都需要使用不同的随机数来持续计算该哈希值,直至达到目标为止。当一个节点的算出确切的值,其他所有的节点必须相互确认该值的正确性。埋谈之后新区块中的交易将被验证以防欺诈。

在比特币中,以上运算哈希值的节点被称作“矿工”,而PoW的过程弯喊碰被称为“挖矿”。挖矿是一个耗时的过程,所以也提出了相应的激励机制(例如向矿工授予一小部分比特币)。PoW的优点是完全的去中心化,其缺点是消耗大量算力造成了的资源浪费,达成共识的周期也比较长,共识效率低下,因此其不是很适合商业使用。

2. 加密货币的应用实例

比特币(Bitcoin) 及莱特币(Litecoin)。以太坊(Ethereum) 的前三个阶段(Frontier前沿、Homestead家园、Metropolis大都会)皆采用PoW机制,其第四个阶段 (Serenity宁静) 将采用权益证明机制。PoW适用于公有链。

PoW机制虽然已经成功证明了其长期稳定和相对公平,但在现有框架下,采用PoW的“挖矿”形式,将消耗大量的能源。其消耗的能源只是不停的去做SHA256的运算来保证工作量公平,并没有其他的存在意义。而目前BTC所能达到的交易效率为约5TPS(5笔/秒),以太坊目前受到单区块GAS总额的上限,所能达到的交易频率大约是25TPS,与平均千次每秒、峰值能达到万次每秒处理效率的VISA和MASTERCARD相差甚远。

3. 简图理解模式

(ps:其中A、B、C、D计算哈希值的过程即为“挖矿”,为了犒劳时间成本的付出,机制会以一定数量的比特币作为激励。)

(Ps:PoS模式下,你的“挖矿”收益正比于你的币龄(币的数量*天数),而与电脑的计算性能无关。我们可以认为任何具有概率性事件的累计都是工作量证明,如淘金。假设矿石含金量为p% 质量, 当你得到一定量黄金时,我们可以认为你一定挖掘了1/p 质量的矿石。而且得到的黄金数量越多,这个证明越可靠。)

(二)PoS(Proof of Stake)股权/权益证明机制

1.基本介绍

PoS要求人们证明货币数量的所有权,其相信拥有货币数量多的人攻击网络的可能性低。基于账户余额的选择是非常不公平的,因为单一最富有的人势必在网络中占主导地位,所以提出了许多解决方案。

在股权证明机制中,每当创建一个区块时,矿工需要创建一个称为“币权”的交易,这个交易会按照一定比例预先将一些币发给矿工。然后股权证明机制根据每个节点持有代币的比例和时间(币龄), 依据算法等比例地降低节点的挖矿难度,以加快节点寻找随机数的速度,缩短达成共识所需的时间。

与PoW相比,PoS可以节省更多的能源,更有效率。但是由于挖矿成本接近于0,因此可能会遭受攻击。且PoS在本质上仍然需要网络中的节点进行挖矿运算,所以它同样难以应用于商业领域。

2.数字货币的应用实例

PoS机制下较为成熟的数字货币是点点币(Peercoin)和未来币(NXT),相比于PoW,PoS机制节省了能源,引入了" 币天 "这个概念来参与随机运算。PoS机制能够让更多的持币人参与到记账这个工作中去,而不需要额外购买设备(矿机、显卡等)。每个单位代币的运算能力与其持有的时间长成正相关,即持有人持有的代币数量越多、时间越长,其所能签署、生产下一个区块的概率越大。一旦其签署了下一个区块,持币人持有的币天即清零,重新进入新的循环。

PoS适用于公有链。

3.区块签署人的产生方式

在PoS机制下,因为区块的签署人由随机产生,则一些持币人会长期、大额持有代币以获得更大概率地产生区块,尽可能多的去清零他的"币天"。因此整个网络中的流通代币会减少,从而不利于代币在链上的流通,价格也更容易受到波动。由于可能会存在少量大户持有整个网络中大多数代币的情况,整个网络有可能会随着运行时间的增长而越来越趋向于中心化。相对于PoW而言,PoS机制下作恶的成本很低,因此对于分叉或是双重支付的攻击,需要更多的机制来保证共识。稳定情况下,每秒大约能产生12笔交易,但因为网络延迟及共识问题,需要约60秒才能完整广播共识区块。长期来看,生成区块(即清零"币天")的速度远低于网络传播和广播的速度,因此在PoS机制下需要对生成区块进行"限速",来保证主网的稳定运行。

4.简图理解模式

(PS:拥有越多“股份”权益的人越容易获取账权。是指获得多少货币,取决于你挖矿贡献的工作量,电脑性能越好,分给你的矿就会越多。)

(在纯POS体系中,如NXT,没有挖矿过程,初始的股权分配已经固定,之后只是股权在交易者之中流转,非常类似于现实世界的股票。)

(三)DPoS(Delegated Proof of Stake)股份授权证明机制

1.基本介绍

由于PoS的种种弊端,由此比特股首创的权益代表证明机制 DPoS(Delegated Proof of Stake)应运而生。DPoS 机制中的核心的要素是选举,每个系统原生代币的持有者在区块链里面都可以参与选举,所持有的代币余额即为投票权重。通过投票,股东可以选举出理事会成员,也可以就关系平台发展方向的议题表明态度,这一切构成了社区自治的基础。股东除了自己投票参与选举外,还可以通过将自己的选举票数授权给自己信任的其它账户来代表自己投票。

具体来说, DPoS由比特股(Bitshares)项目组发明。股权拥有着选举他们的代表来进行区块的生成和验证。DPoS类似于现代企业董事会制度,比特股系统将代币持有者称为股东,由股东投票选出101名代表, 然后由这些代表负责生成和验证区块。 持币者若想称为一名代表,需先用自己的公钥去区块链注册,获得一个长度为32位的特有身份标识符,股东可以对这个标识符以交易的形式进行投票,得票数前101位被选为代表。

代表们轮流产生区块,收益(交易手续费)平分。DPoS的优点在于大幅减少了参与区块验证和记账的节点数量,从而缩短了共识验证所需要的时间,大幅提高了交易效率。从某种角度来说,DPoS可以理解为多中心系统,兼具去中心化和中心化优势。优点:大幅缩小参与验证和记账节点的数量,可以达到秒级的共识验证。缺点:投票积极性不高,绝大部分代币持有者未参与投票;另整个共识机制还是依赖于代币,很多商业应用是不需要代币存在的。

DPoS机制要求在产生下一个区块之前,必须验证上一个区块已经被受信任节点所签署。相比于PoS的" 全民挖矿 ",DPoS则是利用类似" 代表大会 "的制度来直接选取可信任节点,由这些可信任节点(即见证人)来代替其他持币人行使权力,见证人节点要求长期在线,从而解决了因为PoS签署区块人不是经常在线而可能导致的产块延误等一系列问题。 DPoS机制通常能达到万次每秒的交易速度,在网络延迟低的情况下可以达到十万秒级别,非常适合企业级的应用。 因为公信宝数据交易所对于数据交易频率要求高,更要求长期稳定性,因此DPoS是非常不错的选择。

2. 股份授权证明机制下的机构与系统

理事会是区块链网络的权力机构,理事会的人选由系统股东(即持币人)选举产生,理事会成员有权发起议案和对议案进行投票表决。

理事会的重要职责之一是根据需要调整系统的可变参数,这些参数包括:

l 费用相关:各种交易类型的费率。

l 授权相关:对接入网络的第三方平台收费及补贴相关参数。

l 区块生产相关:区块生产间隔时间,区块奖励。

l 身份审核相关:审核验证异常机构账户的信息情况。

l 同时,关系到理事会利益的事项将不通过理事会设定。

在Finchain系统中,见证人负责收集网络运行时广播出来的各种交易并打包到区块中,其工作类似于比特币网络中的矿工,在采用 PoW(工作量证明)的比特币网络中,由一种获奖概率取决于哈希算力的抽彩票方式来决定哪个矿工节点产生下一个区块。而在采用 DPoS 机制的金融链网络中,通过理事会投票决定见证人的数量,由持币人投票来决定见证人人选。入选的活跃见证人按顺序打包交易并生产区块,在每一轮区块生产之后,见证人会在随机洗牌决定新的顺序后进入下一轮的区块生产。

3. DPoS的应用实例

比特股(bitshares) 采用DPoS。DPoS主要适用于联盟链。

4.简图理解模式

(四)PBFT(Practical Byzantine Fault Tolerance)实用拜占庭容错算法

1. 基本介绍

PBFT是一种基于严格数学证明的算法,需要经过三个阶段的信息交互和局部共识来达成最终的一致输出。三个阶段分别为预备 (pre-prepare)、准备 (prepare)、落实 (commit)。PBFT算法证明系统中只要有2/3比例以上的正常节点,就能保证最终一定可以输出一致的共识结果。换言之,在使用PBFT算法的系统中,至多可以容忍不超过系统全部节点数量1/3的失效节点 (包括有意误导、故意破坏系统、超时、重复发送消息、伪造签名等的节点,又称为”拜占庭”节点)。

2. PBFT的应用实例

著名联盟链Hyperledger Fabric v0.6采用的是PBFT,v1.0又推出PBFT的改进版本SBFT。PBFT主要适用于私有链和联盟链。

3. 简图理解模式

上图显示了一个简化的PBFT的协议通信模式,其中C为客户端,0 – 3表示服务节点,其中0为主节点,3为故障节点。整个协议的基本过程如下:

(1) 客户端发送请求,激活主节点的服务 *** 作;

(2) 当主节点接收请求后,启动三阶段的协议以向各从节点广播请求;

(a) 序号分配阶段,主节点给请求赋值一个序号n,广播序号分配消息和客户端的请求消息m,并将构造pre-prepare消息给各从节点;

(b) 交互阶段,从节点接收pre-prepare消息,向其他服务节点广播prepare消息;

(c) 序号确认阶段,各节点对视图内的请求和次序进行验证后,广播commit消息,执行收到的客户端的请求并给客户端响应。

(3) 客户端等待来自不同节点的响应,若有m+1个响应相同,则该响应即为运算的结果;

(五)DBFT(Delegated Byzantine Fault Tolerance)授权拜占庭容错算法

1. 基本介绍

DBFT建基于PBFT的基础上,在这个机制当中,存在两种参与者,一种是专业记账的“超级节点”,一种是系统当中不参与记账的普通用户。普通用户基于持有权益的比例来投票选出超级节点,当需要通过一项共识(记账)时,在这些超级节点中随机推选出一名发言人拟定方案,然后由其他超级节点根据拜占庭容错算法(见上文),即少数服从多数的原则进行表态。如果超过2/3的超级节点表示同意发言人方案,则共识达成。这个提案就成为最终发布的区块,并且该区块是不可逆的,所有里面的交易都是百分之百确认的。如果在一定时间内还未达成一致的提案,或者发现有非法交易的话,可以由其他超级节点重新发起提案,重复投票过程,直至达成共识。

2. DBFT的应用实例

国内加密货币及区块链平台NEO是 DBFT算法的研发者及采用者。

3. 简图理解模式

假设系统中只有四个由普通用户投票选出的超级节点,当需要通过一项共识时,系统就会从代表中随机选出一名发言人拟定方案。发言人会将拟好的方案交给每位代表,每位代表先判断发言人的计算结果与它们自身纪录的是否一致,再与其它代表商讨验证计算结果是否正确。如果2/3的代表一致表示发言人方案的计算结果是正确的,那么方案就此通过。

如果只有不到2/3的代表达成共识,将随机选出一名新的发言人,再重复上述流程。这个体系旨在保护系统不受无法行使职能的领袖影响。

上图假设全体节点都是诚实的,达成100%共识,将对方案A(区块)进行验证。

鉴于发言人是随机选出的一名代表,因此他可能会不诚实或出现故障。上图假设发言人给3名代表中的2名发送了恶意信息(方案B),同时给1名代表发送了正确信息(方案A)。

在这种情况下该恶意信息(方案B)无法通过。中间与右边的代表自身的计算结果与发言人发送的不一致,因此就不能验证发言人拟定的方案,导致2人拒绝通过方案。左边的代表因接收了正确信息,与自身的计算结果相符,因此能确认方案,继而成功完成1次验证。但本方案仍无法通过,因为不足2/3的代表达成共识。接着将随机选出一名新发言人,重新开始共识流程。

上图假设发言人是诚实的,但其中1名代表出现了异常;右边的代表向其他代表发送了不正确的信息(B)。

在这种情况下发言人拟定的正确信息(A)依然可以获得验证,因为左边与中间诚实的代表都可以验证由诚实的发言人拟定的方案,达成2/3的共识。代表也可以判断到底是发言人向右边的节点说谎还是右边的节点不诚实。

(六)SCP (Stellar Consensus Protocol ) 恒星共识协议

1. 基本介绍

SCP 是 Stellar (一种基于互联网的去中心化全球支付协议) 研发及使用的共识算法,其建基于联邦拜占庭协议 (Federated Byzantine Agreement) 。传统的非联邦拜占庭协议(如上文的PBFT和DBFT)虽然确保可以通过分布式的方法达成共识,并达到拜占庭容错 (至多可以容忍不超过系统全部节点数量1/3的失效节点),它是一个中心化的系统 — 网络中节点的数量和身份必须提前知晓且验证过。而联邦拜占庭协议的不同之处在于它能够去中心化的同时,又可以做到拜占庭容错。

[…]

(七)RPCA(Ripple Protocol Consensus Algorithm)Ripple共识算法

1. 基本介绍

RPCA是Ripple(一种基于互联网的开源支付协议,可以实现去中心化的货币兑换、支付与清算功能)研发及使用的共识算法。在 Ripple 的网络中,交易由客户端(应用)发起,经过追踪节点(tracking node)或验证节点(validating node)把交易广播到整个网络中。追踪节点的主要功能是分发交易信息以及响应客户端的账本请求。验证节点除包含追踪节点的所有功能外,还能够通过共识协议,在账本中增加新的账本实例数据。

Ripple 的共识达成发生在验证节点之间,每个验证节点都预先配置了一份可信任节点名单,称为 UNL(Unique Node List)。在名单上的节点可对交易达成进行投票。共识过程如下:

(1) 每个验证节点会不断收到从网络发送过来的交易,通过与本地账本数据验证后,不合法的交易直接丢弃,合法的交易将汇总成交易候选集(candidate set)。交易候选集里面还包括之前共识过程无法确认而遗留下来的交易。

(2) 每个验证节点把自己的交易候选集作为提案发送给其他验证节点。

(3) 验证节点在收到其他节点发来的提案后,如果不是来自UNL上的节点,则忽略该提案;如果是来自UNL上的节点,就会对比提案中的交易和本地的交易候选集,如果有相同的交易,该交易就获得一票。在一定时间内,当交易获得超过50%的票数时,则该交易进入下一轮。没有超过50%的交易,将留待下一次共识过程去确认。

(4) 验证节点把超过50%票数的交易作为提案发给其他节点,同时提高所需票数的阈值到60%,重复步骤(3)、步骤(4),直到阈值达到80%。

(5) 验证节点把经过80%UNL节点确认的交易正式写入本地的账本数据中,称为最后关闭账本(last closed ledger),即账本最后(最新)的状态。

在Ripple的共识算法中,参与投票节点的身份是事先知道的,因此,算法的效率比PoW等匿名共识算法要高效,交易的确认时间只需几秒钟。这点也决定了该共识算法只适合于联盟链或私有链。Ripple共识算法的拜占庭容错(BFT)能力为(n-1)/5,即可以容忍整个网络中20%的节点出现拜占庭错误而不影响正确的共识。

2. 简图理解模式

共识过程节点交互示意图:

共识算法流程:

(八)POOL验证池共识机制

Pool验证池共识机制是基于传统的分布式一致性算法(Paxos和Raft)的基础上开发的机制。Paxos算法是1990年提出的一种基于消息传递且具有高度容错特性的一致性算法。过去, Paxos一直是分布式协议的标准,但是Paxos难于理解,更难以实现。Raft则是在2013年发布的一个比Paxos简单又能实现Paxos所解决问题的一致性算法。Paxos和Raft达成共识的过程皆如同选举一样,参选者需要说服大多数选民(服务器)投票给他,一旦选定后就跟随其 *** 作。Paxos和Raft的区别在于选举的具体过程不同。而Pool验证池共识机制即是在这两种成熟的分布式一致性算法的基础上,辅之以数据验证的机制。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12484696.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-25
下一篇 2023-05-25

发表评论

登录后才能评论

评论列表(0条)

保存