#include<malloc.h>槐亏察
#include<string.h>
//#include
#define HASH_LEN 50 //哈希表的长度
#define M 47
#define NAME_NO 30 //人名的个数
typedef struct NAME
{
char *py //名字的拼音
int k //拼音所对应的整数
}NAME
NAME NameList[HASH_LEN]
typedef struct hterm//哈希表
{
char *py //名字的拼音
int k//拼音所对应的整数
int si //查找长度
}HASH
HASH HashList[HASH_LEN]
/*-----------------------姓名(结构体数组)初始化---------------------------------*/
void InitNameList()
{ int i
char *f
int r,s0
NameList[0].py="chenghongxiu"
NameList[1].py="yuanhao"
NameList[2].py="yangyang"
NameList[3].py="zhanghen"
NameList[4].py="chenghongxiu"
NameList[5].py="xiaokai"
NameList[6].py="liupeng"
NameList[7].py="shenyonghai"
NameList[8].py="chengdaoquan"
NameList[9].py="ludaoqing"
NameList[10].py="gongyunxiang"
NameList[11].py="sunzhenxing"
NameList[12].py="sunrongfei"
NameList[13].py="sunminglong"
NameList[14].py="空芦zhanghao"
NameList[15].py="tianmiao"
NameList[16].py="yaojianzhong"
NameList[17].py="yaojianqing"
NameList[18].py="yaojianhua"
NameList[19].py="yaohaifeng"
NameList[20].py="chengyanhao"
NameList[21].py="yaoqiufeng"
NameList[22].py="qianpengcheng"
NameList[23].py="yaohaifeng"
NameList[24].py="bianyan"
NameList[25].py="linglei"
NameList[26].py="fuzhonghui"
NameList[27].py="huanhaiyan"
NameList[28].py="liudianqin"
NameList[29].py="wangbinnian"
for (i=0i<NAME_NOi++)// *求出各个姓名的拼音所对应的整数
{
s0=0
f=NameList[i].py
for (r=0*(f+r) != '\0'r++) //方法:将字符串的各个字符所对应的ASCII码相加,所得的整数做为哈铅茄希表的关键字
s0=*(f+r)+s0
NameList[i].k=s0
}
}
/*-----------------------建立哈希表---------------------------------*/
void CreateHashList()
{int i
for ( i=0i<HASH_LENi++)//哈希表的初始化
{
HashList[i].py=""
HashList[i].k=0
HashList[i].si=0
}
for (i=0 i<NAME_NO)
{
int sum=0
int adr=(NameList[i].k) % M //哈希函数
int d=adr
if(HashList[adr].si==0)//如果不冲突
{
HashList[adr].k=NameList[i].k
HashList[adr].py=NameList[i].py
HashList[adr].si=1
}
else //冲突
{
do
{
d=(d+((NameList[i].k))%10+1)%M //伪散列
sum=sum+1 //查找次数加1
}while (HashList[d].k!=0)
HashList[d].k=NameList[i].k
HashList[d].py=NameList[i].py
HashList[d].si=sum+1
}i++
}
}
/*-------------------------------------查找------------------------------------*/
void FindList()
{ int r
char name[20]={0}
int s0=0
int sum=1
int adr
int d
printf("\n\n请输入姓名的拼音: ") //输入姓名
scanf("%s",name)
for ( r=0r<20r++)//求出姓名的拼音所对应的整数(关键字)
s0+=name[r]
adr=s0 % M //使用哈希函数
d=adr
if(HashList[adr].k==s0) //分3种情况进行判断
printf("\n姓名:%s 关键字:%d 查找长度为: 1",HashList[d].py,s0)
else if (HashList[adr].k==0)
printf("无该记录!")
else
{
int g=0
do
{
d=(d+s0%10+1)%M //伪散列
sum=sum+1
if (HashList[d].k==0)
{
printf("无记录! ")
g=1
}
if (HashList[d].k==s0)
{
printf("\n姓名:%s 关键字:%d 查找长度为:%d",HashList[d].py,s0,sum)
g=1
}
}while(g==0)
}
}
/*--------------------------------显示哈希表----------------------------*/
void Display()
{int i
float average=0
printf("\n\n地址\t关键字\t\t搜索长度\tH(key)\t\t拼音 \n")//显示的格式
for( i=0i<15i++)
{
printf("%d ",i)
printf("\t%d ",HashList[i].k)
printf("\t\t%d ",HashList[i].si)
printf("\t\t%d ",(HashList[i].k)%M)
printf("\t %s ",HashList[i].py)
printf("\n")
}
// printf("按任意键继续显示...\n") //由于数据比较多,所以分屏显示(以便在Win9x/DOS下能看到所有的数据)
// getch()
for( i=15i<30i++)
{
printf("%d ",i)
printf("\t%d ",HashList[i].k)
printf("\t\t%d ",HashList[i].si)
printf("\t\t%d ",(HashList[i].k)%M)
printf("\t %s ",HashList[i].py)
printf("\n")
}
// printf("按任意键继续显示...\n")
// getch()
for( i=30i<40i++)
{
printf("%d ",i)
printf("\t%d ",HashList[i].k)
printf("\t\t%d ",HashList[i].si)
printf("\t\t%d ",(HashList[i].k)%M)
printf("\t %s ",HashList[i].py)
printf("\n")
}
//printf("按任意键继续显示...\n")
//getch()
for( i=40i<50i++)
{
printf("%d ",i)
printf("\t%d ",HashList[i].k)
printf("\t\t%d ",HashList[i].si)
printf("\t\t%d ",(HashList[i].k)%M)
printf("\t %s ",HashList[i].py)
printf("\n")
}
for (i=0i<HASH_LENi++)
{average+=HashList[i].si
average/=NAME_NO
printf("\n\n平均查找长度:ASL(%d)=%f \n\n",NAME_NO,average)
}
}
/*--------------------------------主函数----------------------------*/
void main()
{
/* ::SetConsoleTitle("哈希表 *** 作") //Windows API函数,设置控制台窗口的标题
HANDLE hCon = ::GetStdHandle(STD_OUTPUT_HANDLE)//获得标准输出设备的句柄
::SetConsoleTextAttribute(hCon, 10|0) //设置文本颜色
*/
printf("\n------------------------哈希表的建立和查找----------------------")
InitNameList()
CreateHashList ()
while(1)
{ char ch1
printf("\n\n")
printf("1. 显示哈希表\n")
printf("2. 查找\n")
printf("3. 退出\n")
err:
scanf("%c",&ch1)
if (ch1=='1')
Display()
else if (ch1=='2')
FindList()
else if (ch1=='3')
return
else
{
printf("\n请输入正确的选择!")
goto err
}
}
}
算法设计已知一个含有100个记录的表,关键字为中国人姓氏的拼音,请给出此表的一个哈希表设计方案,要求在等概率情况下查找成功的平均查找长度不超过3。
(1) 根据平均查找长度不超过3,确定装填因子α;
snl≈1/2(1+(1/(1-α))){使用线性探测再散列解决冲突}
因snl<裂大慎=3,所以α至少为0.8,取α=0.8.
(2) 根据α确定表长
由α=(表中添入的记录数)/(哈希表的长度)
所以 哈希表的长度=100/α=125
取肆敬表长=150;
(3) 选取哈希函数
H(key)=key MOD 149
(4) key 的选取方法。
设大写字母在表中用1..26 表示,小写字母用27--52 表示。每个人的姓名取四个字
母(两字姓名取首尾两个字母,三字姓名取各字拼音第一仿念个字母,中间字取首尾两
个拼音字母)。
将前两个拼音字母的序号并起来,后两个也并起来, 然后相加形成关键字。要求姓名
的第一个拼音字母要大写,如姓名'王丽明'拼音为'Wang liming',取出四个拼音字母
为'W,l,i,m',个字母序号依次为 23 38 35 39,组成关键字为 2338+3539=5877,该姓
名的哈希地址为 5877 MOD 149=66。
(5) 用线性探测再散列处理冲突。
这是设计原理,别的要求没拉:(
有现成的SHA1算法函数
复制过来。
然后打开文件, 读数据, 调用SHA1函数即可。
#include <stdio.h>#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#undef BIG_ENDIAN_HOST
typedef unsigned int u32
/****************
* Rotate a 32 bit integer by n bytes
*/
#if defined(__GNUC__) && defined(__i386__)
static inline u32
rol( u32 x, int n)
{
__asm__("roll %%cl,%0"
:"=r" (x)
:"0" (x),"c" (n))
return x
}
#else
#define rol(x,n) ( ((x) << (n)) | ((x) >> (32-(n))) )
#endif
typedef struct {
u32 h0,h1,h2,h3,h4
u32 nblocks
unsigned char buf[64]
int count
} SHA1_CONTEXT
void
sha1_init( SHA1_CONTEXT *hd )
{
hd->h0 = 0x67452301
hd->h1 = 0xefcdab89
hd->h2 = 0x98badcfe
hd->h3 = 0x10325476
hd->h4 = 0xc3d2e1f0
hd->nblocks = 0
hd->count = 0
}
/****************
* Transform the message X which consists of 16 32-bit-words
*/
static void
transform( SHA1_CONTEXT *hd, unsigned char *data )
{
u32 a,b,c,d,e,tm
u32 x[16]
/* get values from the chaining vars */
a = hd->h0
b = hd->h1
c = hd->h2
d = hd->h3
e = hd->h4
#ifdef BIG_ENDIAN_HOST
memcpy( x, data, 64 )
#else
{
int i
unsigned char *p2
for(i=0, p2=(unsigned char*)x i < 16 i++, p2 += 4 ) 差橘
{
p2[3] = *data++
p2[2] = *data++
p2[1] = *data++
p2[0] = *data++
}
}
#endif
#define K1 0x5A827999L
#define K2 0x6ED9EBA1L
#define K3 0x8F1BBCDCL
#define K4 0xCA62C1D6L
#define F1(x,y,z) ( z ^ ( x & ( y ^ z ) ) )
#define F2(x,y,z) ( x ^ y ^ z )
#define F3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) )
#define F4(x,y,z) 此基 ( x ^ y ^ z )
#define M(i) ( tm = x[i&0x0f] ^ x[(i-14)&0x0f] \
^ x[(i-8)&0x0f] ^ x[(i-3)&0x0f] \
, (x[i&0x0f] = rol(tm,1)) )
#define R(a,b,c,d,e,f,k,m) do { e += rol( a, 5 ) \
+ f( b, c, d ) \
+ k \
+ m \
b = rol( b, 30 ) \
} while(0)
R( a, b, c, d, e, F1, K1, x[ 0] )
R( e, a, b, c, d, F1, K1, x[ 1] )
R( d, e, a, b, c, F1, K1, x[ 2] )
R( c, d, e, a, b, F1, K1, x[ 3] )
R( b, c, d, e, a, F1, K1, x[ 4] )
R( a, b, c, d, e, F1, K1, x[ 5] )
R( e, a, b, c, d, F1, K1, x[ 6] )
R( 森庆谨d, e, a, b, c, F1, K1, x[ 7] )
R( c, d, e, a, b, F1, K1, x[ 8] )
R( b, c, d, e, a, F1, K1, x[ 9] )
R( a, b, c, d, e, F1, K1, x[10] )
R( e, a, b, c, d, F1, K1, x[11] )
R( d, e, a, b, c, F1, K1, x[12] )
R( c, d, e, a, b, F1, K1, x[13] )
R( b, c, d, e, a, F1, K1, x[14] )
R( a, b, c, d, e, F1, K1, x[15] )
R( e, a, b, c, d, F1, K1, M(16) )
R( d, e, a, b, c, F1, K1, M(17) )
R( c, d, e, a, b, F1, K1, M(18) )
R( b, c, d, e, a, F1, K1, M(19) )
R( a, b, c, d, e, F2, K2, M(20) )
R( e, a, b, c, d, F2, K2, M(21) )
R( d, e, a, b, c, F2, K2, M(22) )
R( c, d, e, a, b, F2, K2, M(23) )
R( b, c, d, e, a, F2, K2, M(24) )
R( a, b, c, d, e, F2, K2, M(25) )
R( e, a, b, c, d, F2, K2, M(26) )
R( d, e, a, b, c, F2, K2, M(27) )
R( c, d, e, a, b, F2, K2, M(28) )
R( b, c, d, e, a, F2, K2, M(29) )
R( a, b, c, d, e, F2, K2, M(30) )
R( e, a, b, c, d, F2, K2, M(31) )
R( d, e, a, b, c, F2, K2, M(32) )
R( c, d, e, a, b, F2, K2, M(33) )
R( b, c, d, e, a, F2, K2, M(34) )
R( a, b, c, d, e, F2, K2, M(35) )
R( e, a, b, c, d, F2, K2, M(36) )
R( d, e, a, b, c, F2, K2, M(37) )
R( c, d, e, a, b, F2, K2, M(38) )
R( b, c, d, e, a, F2, K2, M(39) )
R( a, b, c, d, e, F3, K3, M(40) )
R( e, a, b, c, d, F3, K3, M(41) )
R( d, e, a, b, c, F3, K3, M(42) )
R( c, d, e, a, b, F3, K3, M(43) )
R( b, c, d, e, a, F3, K3, M(44) )
R( a, b, c, d, e, F3, K3, M(45) )
R( e, a, b, c, d, F3, K3, M(46) )
R( d, e, a, b, c, F3, K3, M(47) )
R( c, d, e, a, b, F3, K3, M(48) )
R( b, c, d, e, a, F3, K3, M(49) )
R( a, b, c, d, e, F3, K3, M(50) )
R( e, a, b, c, d, F3, K3, M(51) )
R( d, e, a, b, c, F3, K3, M(52) )
R( c, d, e, a, b, F3, K3, M(53) )
R( b, c, d, e, a, F3, K3, M(54) )
R( a, b, c, d, e, F3, K3, M(55) )
R( e, a, b, c, d, F3, K3, M(56) )
R( d, e, a, b, c, F3, K3, M(57) )
R( c, d, e, a, b, F3, K3, M(58) )
R( b, c, d, e, a, F3, K3, M(59) )
R( a, b, c, d, e, F4, K4, M(60) )
R( e, a, b, c, d, F4, K4, M(61) )
R( d, e, a, b, c, F4, K4, M(62) )
R( c, d, e, a, b, F4, K4, M(63) )
R( b, c, d, e, a, F4, K4, M(64) )
R( a, b, c, d, e, F4, K4, M(65) )
R( e, a, b, c, d, F4, K4, M(66) )
R( d, e, a, b, c, F4, K4, M(67) )
R( c, d, e, a, b, F4, K4, M(68) )
R( b, c, d, e, a, F4, K4, M(69) )
R( a, b, c, d, e, F4, K4, M(70) )
R( e, a, b, c, d, F4, K4, M(71) )
R( d, e, a, b, c, F4, K4, M(72) )
R( c, d, e, a, b, F4, K4, M(73) )
R( b, c, d, e, a, F4, K4, M(74) )
R( a, b, c, d, e, F4, K4, M(75) )
R( e, a, b, c, d, F4, K4, M(76) )
R( d, e, a, b, c, F4, K4, M(77) )
R( c, d, e, a, b, F4, K4, M(78) )
R( b, c, d, e, a, F4, K4, M(79) )
/* Update chaining vars */
hd->h0 += a
hd->h1 += b
hd->h2 += c
hd->h3 += d
hd->h4 += e
}
/* Update the message digest with the contents
* of INBUF with length INLEN.
*/
static void
sha1_write( SHA1_CONTEXT *hd, unsigned char *inbuf, size_t inlen)
{
if( hd->count == 64 ) { /* flush the buffer */
transform( hd, hd->buf )
hd->count = 0
hd->nblocks++
}
if( !inbuf )
return
if( hd->count ) {
for( inlen && hd->count < 64 inlen-- )
hd->buf[hd->count++] = *inbuf++
sha1_write( hd, NULL, 0 )
if( !inlen )
return
}
while( inlen >= 64 ) {
transform( hd, inbuf )
hd->count = 0
hd->nblocks++
inlen -= 64
inbuf += 64
}
for( inlen && hd->count < 64 inlen-- )
hd->buf[hd->count++] = *inbuf++
}
/* The routine final terminates the computation and
* returns the digest.
* The handle is prepared for a new cycle, but adding bytes to the
* handle will the destroy the returned buffer.
* Returns: 20 bytes representing the digest.
*/
static void
sha1_final(SHA1_CONTEXT *hd)
{
u32 t, msb, lsb
unsigned char *p
sha1_write(hd, NULL, 0) /* flush */
t = hd->nblocks
/* multiply by 64 to make a byte count */
lsb = t << 6
msb = t >> 26
/* add the count */
t = lsb
if( (lsb += hd->count) < t )
msb++
/* multiply by 8 to make a bit count */
t = lsb
lsb <<= 3
msb <<= 3
msb |= t >> 29
if( hd->count < 56 ) { /* enough room */
hd->buf[hd->count++] = 0x80 /* pad */
while( hd->count < 56 )
hd->buf[hd->count++] = 0 /* pad */
}
else { /* need one extra block */
hd->buf[hd->count++] = 0x80 /* pad character */
while( hd->count < 64 )
hd->buf[hd->count++] = 0
sha1_write(hd, NULL, 0) /* flush */
memset(hd->buf, 0, 56 ) /* fill next block with zeroes */
}
/* append the 64 bit count */
hd->buf[56] = msb >> 24
hd->buf[57] = msb >> 16
hd->buf[58] = msb >> 8
hd->buf[59] = msb
hd->buf[60] = lsb >> 24
hd->buf[61] = lsb >> 16
hd->buf[62] = lsb >> 8
hd->buf[63] = lsb
transform( hd, hd->buf )
p = hd->buf
#ifdef BIG_ENDIAN_HOST
#define X(a) do { *(u32*)p = hd->h##a p += 4 } while(0)
#else /* little endian */
#define X(a) do { *p++ = hd->h##a >> 24 *p++ = hd->h##a >> 16 \
*p++ = hd->h##a >> 8 *p++ = hd->h##a } while(0)
#endif
X(0)
X(1)
X(2)
X(3)
X(4)
#undef X
}
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)