'高斯坐标正算
Private Sub DadiZs()
Dim t As Double, Itp As Double, X0 As Double, N As Double, L0 As Double
Dim V As Double, ll As Double, W As Double, M As Double
Lat = Radian(Lat)
Lon = Radian(Lon)
L0 = Radian(Lo)
If Tq = 0 Then
a = 6378245 '54椭球参数
b = 6356863.01877305
ep = 0.006693421622966
ep1 = 0.006738525414683
f = (a - b) / a
c = a ^ 2 / b
d = b ^ 2 / a
X0 = 111134.8611 * (Lat * 180# / Pi) - (32005.7799 * Sin(Lat) + 133.9238 * (Sin(Lat)) ^ 3 + 0.6973 * (Sin(Lat)) ^ 5 + 0.0039 * (Sin(Lat)) ^ 7) * Cos(Lat)
'X0 = 111134.8611 * (Lat * 180# / Pi) - (32005.7798 * Sin(Lat) + 133.9238 * (Sin(Lat)) ^ 3 + 0.6972 * (Sin(Lat)) ^ 5 + 0.0039 * (Sin(Lat)) ^ 7) * Cos(Lat)
Else
a = 6378140 '75椭球参数
b = 6356755.28815753
ep = 0.006694384999588
ep1 = 0.006739501819473
f = (a - b) / a
c = a ^ 2 / b
d = b ^ 2 / a
X0 = 111133.0047 * (Lat * 180 / Pi) - (32009.8575 * Sin(Lat) + 133.9602 * (Sin(Lat)) ^ 3 + 0.6976 * (Sin(Lat)) ^ 5 + 0.0039 * (Sin(Lat)) ^ 7) * Cos(Lat)
End If
ll = Lon - L0
t = Tan(Lat)
Itp = ep1 * Cos(Lat) ^ 2
W = Sqr(1 - ep * Sin(Lat) ^ 2)
V = Sqr(1 + ep1 * Cos(Lat) ^ 2)
M = c / V ^ 3
N = a / W
'x = X0 + N * t * (Cos(Lat)) ^ 2 * ll ^ 2 / 2 + N * t * (5 - t * t + 9 * Itp + 4 * Itp * Itp) * (Cos(Lat)) ^ 4 * ll ^ 4 / 24 + N * t * (61 - 58 * t ^ 2 + t ^ 4 + 270 * Itp - 330 * t ^ 2 * Itp) * (Cos(Lat)) ^ 6 * ll ^ 6 / 720 + N * t * (1385 - 3111 * t ^ 2 + 543 * t ^ 4 - t ^ 6) * Cos(Lat) ^ 8 * ll ^ 8 / 40320
x = X0 + N * t * (Cos(Lat)) ^ 2 * ll ^ 2 / 2 + N * t * (5 - t * t + 9 * Itp ^ 2 + 4 * Itp ^ 4) * (Cos(Lat)) ^ 4 * ll ^ 4 / 24 + N * t * (61 - 58 * t ^ 2 + t ^ 4 + 270 * Itp ^ 2 - 330 * t ^ 2 * Itp ^ 2) * (Cos(Lat)) ^ 6 * ll ^ 6 / 720 + N * t * (1385 - 3111 * t ^ 2 + 543 * t ^ 4 - t ^ 6) * Cos(Lat) ^ 8 * ll ^ 8 / 40320
y = N * Cos(Lat) * ll + N * (1 - t * t + Itp) * (Cos(Lat)) ^ 3 * ll ^ 3 / 6 + N * (5 - 18 * t * t + t ^ 4 + 14 * Itp - 58 * Itp * t * t) * (Cos(Lat)) ^ 5 * ll ^ 5 / 120 + N * (61 - 479 * t ^ 2 + 179 * t ^ 4 - t ^ 6) * Cos(Lat) ^ 7 * ll ^ 7 / 5040
r = Sin(Lat) * ll + Sin(Lat) * (Cos(Lat)) ^ 2 * ll ^ 3 * (1 + 3 * Itp + 2 * Itp ^ 2) / 3 + Sin(Lat) * (Cos(Lat)) ^ 4 * ll ^ 5 * (2 - t * t) / 15
r = Degree(r)
y = y + 500000#
End Sub
'高斯反算
Private Sub DadiFs()
Dim t As Double, Itp As Double, X0 As Double, Bf As Double, N As Double
Dim v As Double, ll As Double, W As Double, M As Double, L0 As Double
L0 = Radian(Lo)
X0 = x * 0.000001
y = y - 500000#
If Tq = 0 Then
a = 6378245 '54椭球参数
b = 6356863.01877305
ep = 0.006693421622966
ep1 = 0.006738525414683
f = (a - b) / a
c = a ^ 2 / b
d = b ^ 2 / a
If X0 <3 Then
Bf = 9.04353301294 * X0 - 0.00000049604 * X0 ^ 2 - 0.00075310733 * X0 ^ 3 - 0.00000084307 * X0 ^ 4 - 0.00000426055 * X0 ^ 5 - 0.00000010148 * X0 ^ 6
ElseIf X0 <6 Then
Bf = 27.11115372595 + 9.02468257083 * (X0 - 3) - 0.00579740442 * (X0 - 3) ^ 2 - 0.00043532572 * (X0 - 3) ^ 3 + 0.00004857285 * (X0 - 3) ^ 4 + 0.00000215727 * (X0 - 3) ^ 5 - 0.00000019399 * (X0 - 3) ^ 6
End If
Else
a = 6378140 '75椭球参数
b = 6356755.28815753
ep = 0.006694384999588
ep1 = 0.006739501819473
f = (a - b) / a
c = a ^ 2 / b
d = b ^ 2 / a
If X0 <3 Then
Bf = 9.04369066313 * X0 - 0.00000049618 * X0 ^ 2 - 0.00075325505 * X0 ^ 3 - 0.0000008433 * X0 ^ 4 - 0.00000426157 * X0 ^ 5 - 0.0000001015 * X0 ^ 6
ElseIf X0 <6 Then
Bf = 27.11162289465 + 9.02483657729 * (X0 - 3) - 0.00579850656 * (X0 - 3) ^ 2 - 0.00043540029 * (X0 - 3) ^ 3 + 0.00004858357 * (X0 - 3) ^ 4 + 0.00000215769 * (X0 - 3) ^ 5 - 0.00000019404 * (X0 - 3) ^ 6
End If
End If
Bf = Bf * Pi / 180#
t = Tan(Bf)
Itp = ep1 * Cos(Bf) ^ 2
W = Sqr(1 - ep * Sin(Bf) ^ 2)
v = Sqr(1 + ep1 * Cos(Bf) ^ 2)
M = c / v ^ 3
N = a / W
Lat = Bf - 0.5 * v ^ 2 * t * ((y / N) ^ 2 - (5 + 3 * t * t + Itp - 9 * Itp * t * t) * (y / N) ^ 4 / 12 + (61 + 90 * t * t + 45 * t ^ 4) * (y / N) ^ 6 / 360)
ll = ((y / N) - (1 + 2 * t * t + Itp) * (y / N) ^ 3 / 6 + (5 + 28 * t * t + 24 * t ^ 4 + 6 * Itp + 8 * Itp * t * t) * (y / N) ^ 5 / 120) / Cos(Bf)
r = y * t / N - y ^ 3 * t * (1 + t * t - Itp) / (3 * N ^ 3) + y ^ 5 * t * (2 + 5 * t * t + 3 * t ^ 4) / (15 * N ^ 5)
Lat = Degree(Lat)
Lon = Degree(L0 + ll)
r = Degree(r)
End Sub
有了正反算,换带也就完成了!
用到的子程序:
Public Const Pi = 3.14159265358979, p = 206264.806
Public Cktq As String
'角度化弧度
Public Function Radian(a As Double) As Double
Dim Ro As Double
Dim c As Double
Dim Fs As Double
Dim Ib As Integer
Dim Ic As Integer
If a <0 Then a = -a: t = 1
Ro = Pi / 180#
Ib = Int(a)
c = (a - Ib) * 100#
Ic = Int(c + 0.000000000001)
Fs = (c - Ic) * 100#
If t = 1 Then Radian = -(Ib + Ic / 60# + Fs / 3600#) * Ro Else Radian = (Ib + Ic / 60# + Fs / 3600#) * Ro
End Function
'弧度化角度
Public Function Degree(a As Double) As Double
Dim Bo As Double
Dim Fs As Double
Dim Im As Integer
Dim Id As Integer
If a <0 Then a = -a: t = 1
Bo = a
Call DMS(Bo, Id, Im, Fs)
If t = 1 Then Degree = -(Id + Im / 100# + Fs / 10000#) Else Degree = Id + Im / 100# + Fs / 10000#
End Function
Public Sub DMS(a As Double, Id As Integer, Im As Integer, Fs As Double)
Dim Bo As Double
Dim c As Double
c = a
c = 180# / Pi * c
Id = Int(c)
Bo = (c - Id) * 60
Im = Int(Bo)
Fs = (Bo - Im) * 60
End Sub
'取位计算
Public Function Qw(a As Double, Ws As Integer) As Double
Qw = Int(a * 10 ^ Ws + 0.5) / 10 ^ Ws
End Function
另外,站长团上有产品团购,便宜有保证
高斯投影坐标正反算一、基本思想:
高斯投影正算公式就是由大地坐标(L ,B )求解高斯平面坐标(x ,y ),而高斯投影反算公式则是由高斯平面坐标(x ,y)求解大地坐标(L ,B).
二、计算模型:
基本椭球参数:
椭球长半轴a
椭球扁率f
椭球短半轴:(1)b a f =-
椭球第一偏心率
第 1 页
高斯计_高精闷慎度_高效率_高品质
全面覆盖电离辐射, 非电离辐射及直流磁场的检测。低频电磁场还可在线监测, 多种功能供用户选配
点击立即咨询,了解更多详情
咨询
深圳市柯雷科技开发 广告
:e = 椭球第二偏心率
:e '=高斯投影正算公式:此公式换算的精度为0.001m
64256
442234
22)5861(cos sin 720)495(cos 24cos sin 2l t t B B N l t B simB N l B B N X x ''+-''+''++-''+''⋅'蚂祥敬'+
=ρηηρρ 52224255
32233
)5814185(cos 120)1(cos 6cos l t t t B N l t B
第 2 页
N l B N y ''-++-''+''+-''+''⋅''=ηηρηρρ
其中:角度都为弧度
B 为点的纬度,0l L L ''=-,L 为点的经度,0L 为中央子午线经度;
N 为子午圈曲率半径,1222
(1sin )N a e B -=-;
tan t B =; 222cos e B η'=
180
3600ρπ''=*
其中X 为子午线弧长:
2402464661616sin cos ()(2)sin sin 33X a B B B a a a a a B a B ⎡⎤=--++-+⎢⎥⎣⎦
第 3 页
02468,,,,a a a a a 为基本常量,按如下公式计算:
2004682426844686868
83535281612815722321637816323216128m a m m m m m m a m m m a m m m m a m a ⎧=++++⎪⎪⎪=+++⎪⎪⎪=++⎨⎪⎪=+⎪⎪⎪=⎪⎩
02468,,,,m m m m m 为基本常量,按如下公式计算:
22222020426486379(1)5268
m a e m e m m e m m e m m e m =-====
高斯投影反算公式:此公式换算的宴中精度为0.0001’'。
()()()()22222432465
第 4 页
3
2235
2422250
53922461904572012cos 6cos 5282468120cos f f f f f f f f f f f f f f f f f f f f f f
f f f f f f f
t t B B y t t y
M N M N t y t t y
M N y y l t N B N B y t t t N B L l L ηηηηη=-
+++--++=-+++++++=+
其中: 0L 为中央子午线经度。
第 5 页
f B 为底点纬度,也就是当x X =时的子午线弧长所对应的纬度。按照子午线弧长公式:68240sin 2sin 4sin 6sin82468
a a a a X a B B B B B =-+-+,迭代进行计算; 初始开始时设:10f B X a =
以后每次迭代按下式计算:
10
6824(())()sin 2sin 4sin 6sin82468i
i f f i
i i i i f
f f f f B X X F B a a a a a F B B B B B +=-=-+-+
重复迭代至1i
第 6 页
i
f f B B ε+-<;为止。
1222
(1sin )f f N a e B -=-
3
2222(1)(1sin )f f M a e e B -=-- tan f f t B =;
222cos f
f e B η'=
海福特椭球(1910)我国52年以前基准椭球 a=6378388m b=6356911。9461279m α=0.33670033670
克拉索夫斯基椭球(1940 Krassovsky)
第 7 页
北京54坐标系基准椭球 a=6378245m b=6356863。018773m α=0.33523298692
1975年I 。U 。G.G 推荐椭球(国际大地测量协会1975) 西安80坐标系基准椭球
a=6378140m b=6356755.2881575m α=0.0033528131778
WGS-84椭球(GPS 全球定位系统椭球、17届国际大地测量协会) WGS —84 GPS 基准椭球
a=6378137m b=6356752.3142451m α=0。00335281006247
三、程序代码函数:
/************高斯投影正算函数***************
第 8 页
输入 : double a ,f 椭球参数,B,L 为大地坐标,L0为中央子午线的经度,单位为弧度,x,y 为高斯平面坐标,y 加上了500000常量
返回:none
******************************************/
void gaosiforward (double a ,double f ,double B ,double L ,double L0,double &x ,double &y ) {
double b , c ,e1, e2; //短半轴,极点处的子午线曲率半径,第一偏心率,第二偏心率
double l , W ,N , M , daihao ;//W 为常用辅助函数,N 为子午圈曲率半径,M 为卯酉圈曲率半径
第 9 页
double X //子午线弧长,高斯投影的坐标
double ruo , ita , sb , cb ,t
double m [5],n [5];
//计算一些基本常量
{
b =a *(1-f );
e1=sqrt (a *a -b *b )/a
e2=sqrt (a *a -b *b )/b
c =a *a /b ;
m [0]=a *(1-e1*e1) m [1]=3*(e1*e1*m [0])/2。0
m[2]=5*(e1*e1*m[1])/4。0
第 10 页
m[3]=7*(e1*e1*m[2])/6.0
m[4]=9*(e1*e1*m[3])/8。0;
n[0]=m[0]+m[1]/2+3*m[2]/8+5*m[3]/16+35*m[4]/128
n[1]=m[1]/2+m[2]/2+15*m[3]/32+7*m[4]/16;
n[2]=m[2]/8+3*m[3]/16+7*m[4]/32
n[3]=m[3]/32+m[4]/16;
n[4]=m[4]/128 /////by kjh 2014。5。22 把改成了
}
//由纬度计算子午线弧长
第 11 页
{
X=n[0]*B—sin(B)*cos(B)*((n[1]-n[2]+n[3])+(2*n[2]-(16*n[3]/3.0))*sin(B)*sin(B)+16*n[3]*pow(sin(B),4)/3。0)
}
l=L—L0;//弧度
ita=e2*cos(B)
sb=sin(B);
cb=cos(B);
W=sqrt(1-e1*e1*sb*sb);
N=a/W;
第 12 页
t=tan(B)
ruo=(180/Pi)*3600
x=(X+N*sb*cb*l*l/2+N*sb*cb*cb*cb*(5—t*t+9*ita*ita+4*ita*ita*ita*ita)*l*l*l *l/24+N*sb*cb*cb*cb*cb*cb*(61-58*t*t+t*t*t*t)*l*l*l*l*l*l/720)
y=(N*cb*l+N*cb*cb*cb*(1-t*t+ita*ita)*l*l*l/6+N*cb*cb*cb*cb*cb*(5—18*t*t+t*t*t*t+14*ita*ita-58*ita*ita*t*t)*l*l*l*l*l/120);
y=y+500000
}
/**************高斯反算函数***************
第 13 页
输入: double a ,f 椭球参数, x,y为高斯平面坐标,L0为中央子午线的经度; B,L为大地坐标,单位为弧度
*返回:none
*****************************/
void gaosibackward(double a,double f,double x,double y,double L0,double&B,double &L)
{
double b, c,e1, e2//短半轴,极点处的子午线曲率半径,第一偏心率,第二偏心率
double Bf,itaf,tf,Nf,Mf,Wf;
double l
第 14 页
double m[5],n[5]
y=y-500000
//计算一些基本常量
{
b=a*(1—f);
e1=sqrt(a*a—b*b)/a
e2=sqrt(a*a-b*b)/b
c=a*a/b
m[0]=a*(1-e1*e1)
m[1]=3*(e1*e1*m[0])/2.0;
m[2]=5*(e1*e1*m[1])/4。0;
第 15 页
m[3]=7*(e1*e1*m[2])/6。0;
m[4]=9*(e1*e1*m[3])/8.0;
n[0]=m[0]+m[1]/2+3*m[2]/8+5*m[3]/16+35*m[4]/128;
n[1]=m[1]/2+m[2]/2+15*m[3]/32+7*m[4]/16
n[2]=m[2]/8+3*m[3]/16+7*m[4]/32;
n[3]=m[3]/32+m[4]/16
n[4]=m[4]/128;
}
//计算Bf
第 16 页
{
double Bf1,Bfi0,Bfi1,FBfi;
Bf1=x/n[0]
Bfi0=Bf1
Bfi1=0
FBfi=0;
int num=0;
do
{
num=0
FBfi=0.0-n[1]*sin(2*Bfi0)/2.0+n[2]*s
第 17 页
in(4*Bfi0)/4。0-n[3]*sin(6*Bfi0)/6。0;
Bfi1=(x—FBfi)/n[0]
if (fabs(Bfi1—Bfi0)>(Pi*pow(10.0,-8)/(36*18)))
{
num=1;
Bfi0=Bfi1;
}
}while(num==1)
Bf=Bfi1;
}
tf=tan(Bf);
第 18 页
Wf=sqrt(1-e1*e1*sin(Bf)*sin(Bf))
Nf=a/Wf;
Mf=a*(1—e1*e1)/(Wf*Wf*Wf);
itaf=e2*cos(Bf)
B=Bf-tf*y*y/(2*Mf*Nf)+tf*(5+3*tf*tf+itaf*itaf—9*itaf*itaf*tf*tf)*pow(y,4)/(24*Mf*pow(Nf,3))—tf*(61+90*tf*tf+45*pow(tf,4))*pow(y,6)/(720*Mf*pow(Nf,5))
l=y/(Nf*cos(Bf))-(1+2*tf*tf+itaf*itaf)*pow(y,3)/(6*pow(Nf,3)*cos(Bf))+(5+28*
tf*tf+24*pow(tf,4)+6*itaf*itaf+8*itaf*itaf*tf*tf)*pow(y,5)/(120*pow(Nf,5)*
第 19 页
cos(Bf))
L=l+L0
}
2014-5—22
’输入: double a ,f 椭球参数,B,L为大地坐标,L0为中央子午线的经度,单位为弧度,x,y为高斯平面坐标,y加上了常量
Private Function gaosiforward(ByVal a As Double, ByVal f As Double, ByVal B As Double,ByVal L As Double,ByVal L0 As Double)As Double()
Dim x, y, xy(2) As Double
Dim bb, c, e1, e2 As Double’短半轴,极点
第 20 页
处的子午线曲率半径,第一偏心率,第二偏心率
Dim ll, W, N, M, daihao As Double’W为常用辅助函数,N为子午圈曲率半径,M为卯酉圈曲率半径
Dim xx As Double'子午线弧长,高斯投影的坐标
Dim ruo, ita, sb, cb, t As Double
Dim mm(5), nn(5) As Double
bb = a * (1 — f)
e1 = Math。Sqrt(a * a - bb * bb) / a
e2 = Math.Sqrt(a * a — bb * bb) / bb
c = a * a / bb
第 21 页
mm(0) = a *(1 - e1 * e1)
mm(1) = 3 *(e1 * e1 * mm(0)) / 2.0
mm(2) = 5 * (e1 * e1 * mm(1)) / 4.0
mm(3) = 7 *(e1 * e1 * mm(2)) / 6。0
mm(4) = 9 * (e1 * e1 * mm(3)) / 8.0
nn(0) = mm(0) + mm(1) / 2 + 3 * mm(2) / 8 + 5 * mm(3) / 16 + 35 * mm(4) / 128nn(1) = mm(1) / 2 + mm(2) / 2 + 15 * mm(3) / 32 + 7 * mm(4) / 16
nn(2) = mm(2) / 8 + 3 * mm(3) / 16 + 7 * mm(4) / 32
nn(3) = mm(3) / 32 + mm(4) / 16
nn(4) = mm(4) / 128
第 22 页
xx = nn(0) * B — Sin(B) * Cos(B)*((nn(1) - nn(2) + nn(3)) + (2 * nn(2) - (16 * nn(3) / 3。0)) * Sin(B)* Sin(B) + 16 * nn(3) * Pow(Sin(B), 4) / 3.0)
ll = L — L0 ’弧度
ita = e2 * Cos(B)
sb = Sin(B)
cb = Cos(B)
W = Sqrt(1 - e1 * e1 * sb * sb)
N = a / W
t = Tan(B)
ruo = (180 / PI) * 3600
第 23 页
x = (xx + N * sb * cb * ll * ll / 2 + N * sb * cb * cb * cb * (5 - t * t + 9 * ita * ita + 4 * ita * ita * ita * ita) * ll * ll * ll * ll / 24 + N * sb * cb * cb * cb * cb * cb * (61 — 58 * t * t + t * t * t * t) * ll * ll * ll * ll * ll * ll / 720)
第 24 页
百度文库
搜索
百度文库10亿海量资料,查找管理一应俱全
打开APP
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)