A(3,2)=3×2。
组合数学的重要概念之一。从n个不同元素中每次取出m个不同元素(0≤m≤n),不管其顺序合成一组,称为从n个元素中不重复地选取m个元素的一个组合。所有这样的组合的总数称为组合数,这个组合数的计算公式为
或者
n元集合A中不重复地抽取m个元素作成的一个组合实质上是A的一个m元子集合。
排列组合计算方法如下:
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
var s,i,j,n:integerbegin
readln(n)
s:=0
for i:=1 to n do read(a[i])
for j:=1 to n do s:=s+a[j]
writeln(n)
end.
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)