水文计算的基本方法

水文计算的基本方法,第1张

计算方法主要是根据水文现象的随机性质,应用概率论、数理统计的原理和方法,绝宏掘通过实测水文资料的统计分析,估算指定设计频率的水文特征值。在实际计算(或称频率分析)中,水文资料条件大致有两种情况,即有较长实测水文资料和短缺实测水文资料。

在有较长实测水文资料时,可直接用频率分析方法按以下步骤计算:①收集、整理、考证所需的基本水文资料,分析水文资料系列的代表性;②对水文资料系列进行频率分析;③由频率分析求出符合设计标准的水文特征值;④选择符合设计要求的时空分布作为典型,按设计值放大或缩小,求得设计条件下的水文特征值的时空分布;⑤计算成果合理性分析论证。

在短缺实测水文资料时,主要依据水文现象之间的某些客观联系,再按不同情况采用不同方法,常用方法有:①相关分析法。根据水文现象之间的相关关系,利用观测系列较长的水文资料,以延长观测系列较短的水文资料。例如根据降雨与径流关系,通过观测系列较长的降雨资料,延长径流量资料,然后按有资料情况下的水文计算方法进行计算。②等值线图法。各种水文等值线图表示该水文特征值及其统计参数在地区上的分布规律。一般先根据观测历史较长的测站的资料,绘制这些水文等值线图,然后通过内插,求得指定地点的水文设计数据。③经验公式法。先建立需要计算的水文特征值与其他水文特征值、某些地理参数之间的经验关系,以推求工程设计所需要的设计水文特征值。④水文比拟法。即在流域水文气象条件和下垫面情况基本近似的前提下,把有水文资料的流域的水文特征值、统计参数或典型时空分布直接(或作适当修正后)移用到无并核资料的流域作为设计依据。⑤水文调查法。例如调查无资料地区的历史暴雨洪水情况,作为设计依据等。上述两种水文资料绝颤条件之间没有一个明确的界限,而且相对于频率分析的要求现有资料的年限长度还不足。所以即使在有较长的实测水文资料条件下,也要广泛运用后者的各种方法,进行分析论证。

在这一章中,我们将通过编制计算程序通过计算机实现水文地质参数的计算,比如上一节的泰斯公式计算含水层参数,将通过编制计算程序来直接把非稳定流抽水试验资料代入泰斯公式的级数表达式中求解水文地质参数,彻底解放手工劳动,使水文地质参数的计算实现批量化、自动化。不但省去了大量的手工工作,方便、快捷,而且只要计算程序无误、录入原始数据准确,计算结果是绝对可靠的。退一步讲,即使录盯樱入的原始数据有误,因为原始数据是通过数据文件输入计算程序的,也是容易检查、便于纠正、方便重新运行程序输出计算结果的。

计算机求解水文地质参数一般经过下面的几个步骤:

(1)整理抽水试验原始资料,录入试验数据:把抽水试验现场记录的原始资料整理、分析,全部录入计算机,绘制成相应的表格、曲线。

(2)选择合适的计算公式:按照含水层是否承压、抽水试验主孔的性质(完整井、非完整井)、是否有观测孔及观测孔的个数、抽水试验是否呈稳定状态等条件,选择合适的计算公式。

(3)编制计算程序:态则磨以已选用的计算公式为核心、以抽水试验原始数据为依据,编制计算程序。

(4)录入计算程序配套的表格数据:这里不是指抽水试验的原始数据,而是不受抽水试验影响的、计算公式中需要查表获取的某些理论数据或经验数据,例如“1.6承压含水层稳定流帆斗单孔抽水试验计算K值”与“1.7潜水含水层稳定流单孔抽水试验计算K值”中均用到的表1-6-1“根据单位涌水量确定影响半径R经验值一览表”,需要在计算程序运行前就事先录入计算机、等待调用。

(5)检验程序计算结果的正确性:用已知计算结果的抽水试验资料代入程序进行计算,检验程序的计算结果是否正确。

(6)把抽水试验数据按计算程序调用的格式编辑成数据文件,并用计算程序调用的名称存盘。

(7)运行程序进行计算。

本章中,除了像泰斯公式计算含水层参数这样的较复杂计算之外,对几个用计算器就可以计算的简单的求参公式,也编制了简单的计算程序、给出了例题及计算结果供读者练习之用,目的是用最简单的计算作为开头,使读者先尝试到成功的喜悦,增添学习的兴趣和信心,为后面的复杂计算奠定基础。

数值法水量计算的正式进行,是在水文地质勘察外业工作完成之后,计算所需的各种原始数据按照数值法水量计算的要求已全部整理、分析、计算完毕,只等调用;计算所需的任何一种数据缺失,都会导致水量计算无法进行。

一般而言,数值法水量计算需要经过如下几个重要的步骤。

1.概化水文地质模型

包括对计算区域的圈定、计算域边界形状及性质的确定、含水层的划分、上下层水力联系的确定、参数分区等。

其中,计算区域的圈定,主要考虑计算任务的需要,兼顾边界条件处理的方便。对于数百、数千、数万甚至数十万平方千米的大区域,多在勘察区边界附近分段选定出方便概化处理的计算区边界即可,计算区边界与勘察区边界两者一般不会相差非常悬殊。然而,对于面积仅有数平方千米、或者最多数十平方千米的供水水源地,计算区边界圈定与水源地范围常常悬殊很大,并且必须比水源地范围要大。根据情况不同,常会作这样的处理:

(1)当近距离内没有已建成的相邻水源地时,计算区域的圈定主要考虑本水源地开采方案布设的方便前老禅、边界条件概化的方便。

(2)当近距离内有已建成的相邻水源地、新建水源地开采有可能影响到相邻水源地时,计算区域的圈定除了考虑本水源地开采方案布设的方便、边界条件概化的方便之外,还应当把已建成的相邻水源地也纳入计算域内,计算本水源地布设的开采方案时,把相邻水源地现状的开采方案也纳入计算中,以论证计算本水源地布设的不同开采方案对相邻水源地的影响。

(3)当计算区的某一侧是无限延伸时,也就是说开采方案引起的流场变化远远达不到这一侧的自然边界时,如果也不具备一条已知水头变化规律的“已知变水头的边界”时,可以把这一侧的模型边界向外推至开采方案引不起流场变化的数公里之外,作为已知的定水头边界处理。

2.选用合适的数学模型来描述

是潜水还是承压水还是承压转无压水,或者是二者、三者都有;单层还是多层含水层;各向同性还是各向异性;二维流还是准三维流还是三维流;稳定流还是非稳定流;以及初始条件、边界条件的数学描述。

3.单元剖分

在参数分区的基础上进行单元剖分,单元剖分时应当注意:①剖分的单元不能一个单元骑跨在两个参数区上;②用作拟合孔、预测孔的观测孔要剖分在节点上。

4.编程

自己编制计算程序,或者购买适合的计算软件。如果是自己编制计算程序,则要经过调试程序、检验程序,确认程序无误后,再投入正式使用。如果是购买适合的计算软件,则要经过学习、使用软件的培训。

5.计算时段剖分

先确定模型识别、模型检验所涉及起始日期、时间,结束日期、时间,然后,按照一定的递推关系进行计算时段的剖分。

6.初始流场、末刻流场的模拟

在统测水位绘制各含水层初始流场、末刻流场的基础上,模拟计算出剖分图上各含水层全部节点的初始水位值含庆、末刻水位值,作为数值法水量计算程序所用的初始流场、及对照末刻计算流场的实测流场。

7.模型识别

把所确定的模型识别起始日期到结束日期之间的源汇项数据按时段代入计算程序、把各区的参数初值作为模型的参数初值代入计算程序,运行程序,通过不断调试模型参数得到的拟合孔的计算历时曲线与实测的历时曲线进行拟合,调试出一组仿真度最高的模型参数。

8.模型检验

把所确定的模型检验起始日期到结束日期之间的源汇项数据按时段代入计算程序、把模型识别调试出的模型参数代入计算程序,主要看模型识别结束日期之后拟合孔的计算历时曲线,与实测的历时曲线的吻合程度,来检验模型识别阶段调试出的模型参数是否经得起“外推”的检验;如果“外推”段的拟合曲线误差太大,则应推倒识别阶段的模型参数,重新进行模型识别、模型检验,直到满足误差要求为止。

9.模型预报

经过模型识别、通过模型检验后确定了模型参数,即最终确定了数值模型,即可用其来进行模型预报。进行模型预报时,一般根据慧尘供水需要设计多个可供选择的开采方案,分别代入数值模型,来预测未来数十年(城市供水水源地一般不少于30a)后的流场,然后,通过对比、分析,选择其中较合理的开采方案作为水源地建设、施工设计的水文地质依据。

本章以下几节分别介绍不同水文地质条件的几种二维流有限元水量计算问题。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12493823.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-25
下一篇 2023-05-25

发表评论

登录后才能评论

评论列表(0条)

保存