1、编制地区的普通地图 、 (1)比例尺最好与成图比例尺一致或稍大于成图比例尺 (2)选用面积变形较弊贺小的地图投影
2、遥感资料 后几年的影像 在选择遥感图像时,要遵循以下几个原则:
(1)空间分辨率及制图比例尺的选择 空间分辨率指像素 代表的地面范围的大小,即扫描仪的瞬时视场或地面物体能分辨的最小单元。 空间分辨率指像素所代表的地面范围的大小,即扫描仪的瞬时视场或地面物体能分辨的最小单元的地面范围的大小 由于遥感制图是利用遥感图像来提取专题制图信息的,因此在选择遥感图像空间分辨率时要考虑以 下两点要素:一是判读目标的最小尺寸,二是地图成图比例尺。遥感图像的空间分辨率与地图比例尺有 密切关系:空间分辨率越高图像可放大的倍数越大,地图的成图比例尺也越大。 遥感图像的比例尺应与成图比例尺一致或象片比例尺稍大于成图比例尺,这样可以避免成图比例尺 大尺度变换的繁琐技术问题。但对于专题要素的判读、分类、描绘来说,往往要选择大于地图比例尺的 象片为宜。
(2)波谱分辨率与波段的选择 波谱分辨率是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔。间隔越小,分辨率越高。 波谱分辨率是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔。间隔越小,分辨率越高。 是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔 波谱分辨率,是由传感器所使用的波段数目,也就是选择的通道数,以及波段的波长和宽度所决定。各 遥感器波普分辨率在设计时, 都是有针对性的, 多波段的传感器提供了空间环境不同的信息。 TM 为例: 以 TM1 蓝波段:对叶绿素和夜色素浓度敏感,用于区分土壤与植被、落叶林与针叶林、近海水域制图。 TM2 绿波段:对无病害植物叶绿素反射敏感 TM3 红波段:对叶绿素吸收敏感,用于区分植物种类。 TM4 近红外波段:对无病害植物近红外反射敏感,用于生物量测定及水域判别。 TM5 中红外波段:对植物含水量和云的不同反射敏感,可判断含水量和雪、云。 TM6 远红外波段:作温度图,植物热强度测量 TM 图象的性质 波段 1 2 3 4 5 6 7 光谱范围 (微米) 0.45—0.52 0.52—0.60 0.63—0.69 0.76—0.90 1.55—1.75 10.4—12.5 2.08—2.35 光谱性质 蓝 绿 红 近红外 中(近)红外 热(中)红外 中红外 地面分辨 率(米) 30 30 30 30 30 120 30 主 要 应 用 地壤与植被分类 健康植物的绿色反射率 探测不同植物的叶绿素吸收 生物量测量,水体制图 植物湿度测量,区分云与雪 植物热强度测量,其它热制图 水热法制图,地质采矿 包括航空象片、卫星象片及它们的底片和磁带、航空象片镶辑图、若为动态监测还需要前
(3)时间分辨率与时相的选择 遥感图像是某一瞬间地面实况的记录,而地理现象是变化、发展的。因此,在一系列按时间序列成像的 遥感图像 多时相遥感图像中,必然存在着最能揭示地理现象本质的“最佳时相”图像 把传感器对同一目标进行重复探测时, 相邻两次探测的时间间隔称为遥感图像的时间分辨率。 Landsat 如 1、2、3 的图像最高时间分辨率为 18 天,Landsat4、5、7 为 16 天,SPOT-4 为 26 天,而静止气象卫星的 时间分辨率仅为半小时。 遥感图像的时间分辨率对动态监测尤为重要。如:天气预报、灾害监测等需要短周期的时间分辨率,因 此常以“小时”为单位。植物、作物的长势监测、估产等需要用“旬”或“日”为单位。 显然只有气象卫星的图像信息才能满足这种要求;研究植被的季相节律、农作物的长势,目前以选择 landsat-TM 或 SPOT 遥感信息为宜。
3、其他资料 土地现状图、土地利用报告 、编图地区的统计资料、政府庆粗文件、地方志等
二、确立专题要素的分类系统
三、遥感图像处理
1、遥感图像处理方法的选择 、
(1)光学处理法 常用的方法有:假彩色合成(加色法、减色租差派法)、等密度分割、图像相关掩膜。
(2)数字图像校正 方法:辐射校正、几何校正
(3)数字图像增强的方法:
A. 对比度变换
B.空间滤波:是指在图像空间或空间频率对输入图像应用若干滤波函数而获得改进的输出图像的技术。 空间滤波 常用的空间滤波的方法有:平滑和锐化。 :平滑和锐化 平滑:图像中出现某些亮度变化过大的区域,或出现不该有的亮点(“噪声”)时,采用平滑的方法可以减小变化, 平滑 使亮度平缓或去掉不必要的“噪声”点。具体方法有:均值平滑、中值滤波 均值平滑、 均值平滑 锐化:为了突出图像的边缘、线状目标或某些亮度变化率大的部分,可采用锐化方法。常用的几种方法:罗伯特 锐化 梯度、索伯尔梯度、拉普拉斯算法、定向检测
C.彩色变换 彩色变换就是将黑白图像转换成彩色图像的方法。主用的方法有单波段彩色变换、多波段彩色变换、 彩色变换: 彩色变换 HLS 变换等。
D.图像运算
E.多光谱变换 多光谱变换: 多光谱变换 两幅或多幅单波段影像,完成空间配准后,通过一系列运算,可以实现图像增强,达到提取某些信息 或去掉某些不必要信息的目的。方法:差值运算、比值运算 多光谱变换就是指用某种变换把信息集中于较少(一般为 3 个)波段内。常用的方法有:主成分分 主成分分 变换) 缨帽变换( 、缨帽变换 变换) 、沃尔什—哈达玛变换、傅立叶变换、植被指数变换、斜变 析(K-L 变换) 缨帽变换(K-T 变换) 、 换、余弦变换等等。 主成分分析( 变换) 主成分分析(K-L 变换)的主要特性有二: a.能够把原来多个波段中的有用信息尽量集中到数目尽可能少的新的组分图像中。 b.还能够使新的组分图像中的组分之间互不相关,也就是说各个组分包含的信息内容是不重叠的。 K-L 变换的缺点 的缺点是不能排除无用以至有碍的噪声和干扰因素。 的缺点 缨帽变换( 变换) :它是 Kauth 和 Thomas(1976 年)通过分析 MSS 图像反映农作物或植被生长过程的数据结 缨帽变换(K-T 变换) 构后,提出的正交线性变换。 K-T 变换的特点:a.能够把原来多个波段中的有用信息压缩到较少的新的波段内。 b.要求新波段正交或近似正交。 c.分离或削弱无用的干扰因素。 (4)多源信息复合 )
四、遥感图像的判读
1、遥感图像目视判读 遥感图像的判读标志:
遥感图像的判读标志:是指图像上反映出的地物和现象的图像特征,是以深浅不同的黑白色调(灰阶) 或不同的色彩构成的各种各样图形现象出来的。 遥感图像的判读标志可概括为:颜色、形状、空间位置 :颜色、形状、 颜色——色调、 颜色、 颜色——色调、 颜色、阴影 ——色调 形状——形状、纹理、 大小 、 形状 、 位置——位置、图型、相关布局 位置
2、目视解译的方法
(1)直接判读法(2)对比分析法 (3)信息复合法(4)综合推理法(5)地理相关分析法 (1)直接判读法:是根据遥感影像目视判读直接标志,直接确定目标地物属性与范围的一种方法。 直接判读法 例如,在可见光黑白像片上,水体对光线的吸收率强,反射率低,水体呈现灰黑到黑色,根据色调可以从影像 上直接判读出水体,根据水体的形状则可以直接分辨出水体是河流,或者是湖泊。在 MSS4、5、7 三波段假彩色影 像上,植被颜色为红色,根据地物颜色色调,可以直接区别植物与背景。 (2)对比分析法 此方法包括同类地物对比分析法、空间对比分析法和时相动态对比法。 A.同类地物对比分析法 同类地物对比分析法是在同一景遥感影像上,由已知地物推出未知目标地物的方法。 同类地物对比分析法 B.空间对比分析法 空间对比分析法是根据待判读区域的特点,选择另一个熟悉的与遥感图像区域特征类似的影像,将两个影像相互 空间对比分析法 对比分析,由已知影像为依据判读未知影像的一种方法。 C.时相动态对比法,是利用同一地区不同时间成像的遥感影像加以对比分析,了解同一目标地物动态变化的一种解 .时相动态对比法 译方法。 (3)信息复合法:利用透明专题图或者透明地形图与遥感图像重合,根据专题图或者地形图提供的多种辅助信息, 信息复合法 识别遥感图像上目标地物的方法。 (4)综合推理法:综合考虑遥感图像多种解译特征,结合生活常识,分析、推断某种目标地物的方法。 综合推理法 (5)地理相关分析法:根据地理环境中各种地理要素之间的相互依存,相互制约的关系,借助专业知识,分析推断 地理相关分析法 某种地理要素性质、类型、状况与分布的方法。
3、目视解译的基本步骤 (1)准备工作 •选择合适波段与恰当时相的遥感影像 •相关专题地图的准备 •工具材料准备 •熟悉地理概况 •确定专题分类系统 (2)室内初步解译与判读区的野外考察 室内建立初步判读标志 •初步解译的主要任务是掌握解译区域特点,确立典型解译样区,建立目视解译标志,探索解译方法,为全面解译 奠定基础。 •在室内初步解译的工作重点是建立影像解译标准,为了保证解译标志的正确性和可靠性,必须进行解译区的野外 调查。野外调查之前,需要制定野外调查方案与调查路线。 野外考察验正判读标志 在野外调查中,为了建立研究区的判读标志,必须做大量认真细致的工作,填写各种地物的判读标志登记表, 以作为建立地区性的判读标志的依据。在此基础上,制订出影像判读的专题分类系统,根据目标地物与影像特征之 间的关系,通过影像反复判读和野外对比检验,建立遥感影像判读标志。 (3)室内详细判读 在详细判读过程中,要及时将解译中出现的疑难点、边界不清楚的地方和有待验证的问题详细记录下来,留待野 外验证与补判阶段解决。 (4)野外验证与补判 野外验证指再次到遥感影像判读区去实地核实解译的结果。主要内容包括两方面: •检验专题解译中图斑的内容是否正确。 •验证图斑界线是否定位准确,并根据野外实际考察情况修正目标地物的分布界线。 (5)目视解译成果的转绘与制图 遥感图像目视判读成果,一般以专题图或遥感影像图的形式表现出来。
五、遥感图像计算机解译
图像分类方法 监督分类
1.(1) 最小距离法 最小距离法(minimum distance classifier) •以特征空间中的距离作为像素分类的依据。 •在遥感图象上对每一类别选取一个具有代表意义的统计特征量;计算待分像元与已知类别之间的距离,将其归 属于距离最小的一类。 •最小距离分类法原理简单,分类精度不很高,但计算速度快,它可以在快速浏览分类概况中使用。
(2) 分级切割分类法 分级切割分类法(multi-level slice classifier) 多级切割法(multi-level slice classifier)是根据设定在各轴上的值域分割多维特征空间的分类方法。
(3) 特征曲线窗口法 •特征曲线窗口法分类的依据是:相同的地物在相同的地域环境及成像条件下,其特征曲线是相同或相近的,而不 同地物的特征曲线差别明显。 •特征曲线窗口法分类的效果取决于特征参数的选择和窗口大小。各特征参数窗口大小的选择可以不同,它要根据 地物在各特征参数空间里的分布情况而定。
(4) 最大似然法 最大似然法(maximum likelihood classifier) •地物图象可以以其光谱特征向量 X 作为亮度在光谱特征空间中找到一个相应的特征点,来自于同类地物的各种特 征点在特征空间中将形成一种属于某种概率分布的集群。 • 判别某一特征点类属的合理途径是对其落进不同类别集群中的条件概率进行比较, 相应于条件概率大的那个类别, 应是该特征点的归属。
2、监督分类步骤
(1)选择有代表性的训练场,确定各类地物的范围界线。
(2)对各类地物光谱值统计,提取各地物的数值特征。
(3)确定分类判别函数:最小距离法、马氏距离法等。
(4)分类参数、阈值的确定;各类地物像元数值的分布都围绕一个中心特征值,散布在空间的一定范围,因此需要 给出各类地物类型阈值,限定分布范围,构成分类器。
(5)分类:利用分类器分类。
(6)检验:对初步分类结果精度进行检验(分类精度、面积精度、位置精度等) 对分类器进行调整。
(7)待分类影象分类。
(8)分类结果的矢量化。
非监督分类 前提:遥感影象上同类物体在同样条件下具有相同的光谱信息特征,依靠影象上不同类地物光谱信息(或纹理信息) 进行特征提取,再统计特征的差别来达到分类的目的,最后对已分出的个别类进行确认。 非监督分类方法是在没有先验类别(训练区)作为样本的条件下,即事先不知道类别特征,主要根据像元间相似度 非监督分类方法 的大小进行归类合并(将相似度大的像元归为一类)的方法。主要有: (1)分级集群法(2)动态聚类法
第二节 从影像生成专题地图
一、目视解释的专题地图
(1)影像预处理 包括遥感数据的图像校正、图像增强,有时还需要实验室提供监督或非监督分类的图像。
(2)目视解译经过建立影像判读标志,野外判读,室内解译,得到绘有图斑的专题解译原图。
(3)地图概括按比例尺及分类的要求,进行专题解译原图的概括。专题地图需要正规的地理底图,所以地图概括的同时也进行图斑向地理底图的转绘。
(4)地图整饰在转绘完专题图斑的地理底图上进行专题地图的整饰工作。
二、数字图像处理的专题制图
(1)影像预处理 同目视解译类似,影响经过图像校正、图像增强,得到供计算机分类用的遥感影像数据。
(2)按专题要求进行影像分类。
(3)专题类别的地图概括 包括在预处理中消除影像的孤立点,依成图比例尺对图斑尺寸的限制进行栅格影像的概括。
(4)图斑的栅格/矢量变换。
(5)与地理底图叠加,生成专题地图。
三、遥感系列制图
系列地图,简单说就是在内容上和时间上有关联的一组地图。我们所讨论的系列地图,是指根据共同的制图目的,利用同一的制图信息源,按照统一的设计原则,成套编制的遥感专题地图。
地理底图的编制程序:采用常规的方法编制地理底图时,首先选择制图范围内相应比例尺的地形图,进行展点、镶嵌、照像,制成地图薄膜片,然后将膜片蒙在影像图上,用以更新地形图的地理要素。经过地图概括,最后制成供转绘专题影像图的地理底图,其比例尺与专题影响图相同。
遥感系列制图的基本要求
1.统一信息源
2.统一对制图区域地理特征的认识
3.制定统一的设计原则
4.按一定的规则顺序成图
数字图像处理(digital image processing)是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。20世纪20年代,图像处理首次得到应用。20世纪60年代中期,随电子计算机的发展得到普遍应用。60年代末,图像处理技术不断完善,逐渐成为一个新兴的学科。利用数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。数字图像处理主要研究以下内容:傅立叶变换、小波变换等各种图像变换;对图像进行编码和压缩;采用各种方法对图像进行复原和增强;对图像进行分割、描述和识别等。随着技术的发展,数字图像处理主要应用于通讯技术、宇宙探索遥感技术和生物工程等领域。
数字图像处理因易于实现非线性处理,处理程序和处理参数可变,故是一项通用性强,精度高,处理方法灵活,信息保存、传送可靠的图像处理技术。主要用于图像变换、量测、模式识别、模拟以及图像产生。广泛应用在遥感、宇宙观测、影像医学、通信、刑侦及多种工业领域。
遥感影像数字图像处理的内容主要有:①图像恢复。即校正在成像、记录、传输或回放过程中引入的数据错误、噪声与畸变。包括塌稿搭辐射校正、几何校正等;②数据压缩。以改进传输、存储和处理数据效率;③影像增强。突出数据的某些特征,以提高影像目视质量。包括彩色增强、反差增强、边缘增强、密度分割、比值运算、去模糊等;④信息提取。从经过增强处理的影像中提取有用的遥感信息。包括采用各种统计分析、集群分析、频谱分析等自动识别与分类。通常利用专用数字图像处理系统来实现,且依据目的不同采用不同算法和技术。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
数字图像处理概述
数字图像处理发展概况
数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,团拿也推动了数字图像处理这门学科的诞生。在以后的宇航空间技术,如对火星、土星等星球的探测研究中,数字图像处理技术都发挥了巨大的作用。数字图像处理取得的另一个巨大成就是在医学上获得的成果。1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT(Computer Tomograph)。CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,称为图像重建。1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。与此同时,图敬绝像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。随着图像处理技术的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,因人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域。
数字图像处理主要研究的内容
数字图像处理主要研究的内容有以下几个方面: 1) 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。 2) 图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。 3) 图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立"降质模型",再采用某种滤波方法,恢复或重建原来的图像。 4) 图像分割图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。 5) 图像描述图像描述是图像识别和理解的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。 6) 图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。
数字图像处理的基本特点
(1)目前,数字图像处理的信息大多是二维信息,处理信息量很大。如一幅256×256低分辨率黑白图像,要求约64kbit的数据量;对高分辨率彩色512×512图像,则要求768kbit数据量;如果要处理30帧/秒的电视图像序列,则每秒要求500kbit~22.5Mbit数据量。因此对计算机的计算速度、存储容量等要求较高。(2)数字图像处理占用的频带较宽。与语言信息相比,占用的频带要大几个数量级。如电视图像的带宽约5.6MHz,而语音带宽仅为4kHz左右。所以在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本亦高,这就对频带压缩技术提出了更高的要求。(3)数字图像中各个像素是不独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。就电视画面而言,同一行中相邻两个像素或相邻两行间的像素,其相关系数可达0.9以上,而相邻两帧之间的相关性比帧内相关性一般说还要大些。因此,图像处理中信息压缩的潜力很大。(4)由于图像是三维景物的二维投影,一幅图象本身不具备复现三维景物的全部几何信息的能力,很显然三维景物背后部分信息在二维图像画面上是反映不出来的。因此,要分析和理解三维景物必须作合适的假定或附加新的测量,例如双目图像或多视点图像。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。(5)数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大。由于人的视觉系统很复杂,受环境条件、视觉性能、人的情绪爱好以及知识状况影响很大,作为图像质量的评价还有待进一步深入的研究。另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究。例如,什么是感知的初始基元,基元是如何组成的,局部与全局感知的关系,优先敏感的结构、属性和时间特征等,这些都是心理学和神经心理学正在着力研究的课题。
数字图像处理的优点
1. 再现性好数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换 *** 作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的再现。 2.处理精度高按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。对计算机而言,不论数组大小,也不论每个像素的位数多少,其处理程序几乎是一样的。换言之,从原理上讲不论图像的精度有多高,处理总是能实现的,只要在处理时改变程序中的数组参数就可以了。回想一下图像的模拟处理,为了要把处理精度提高一个数量级,就要大幅度地改进处理装置,这在经济上是极不合算的。 3.适用面宽图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、超声波图像或红外图像等)。从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像(彩色图像也是由灰度图像组合成的,例如RGB图像由红、绿、蓝三个灰度图像组合而成)组合而成,因而均可用计算机来处理。即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。 4.灵活性高图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。由于图像的光学处理从原理上讲只能进行线性运算,这极大地限制了光学图像处理能实现的目标。而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。
数字图像处理的应用
图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。 1)航天和航空技术方面的应用数字图像处理技术在航天和航空技术方面的应用,除了上面介绍的JPL对月球、火星照片的处理之外,另一方面的应用是在飞机遥感和卫星遥感技术中。许多国家每天派出很多侦察飞机对地球上有兴趣的地区进行大量的空中摄影。对由此得来的照片进行处理分析,以前需要雇用几千人,而现在改用配备有高级计算机的图像处理系统来判读分析,既节省人力,又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。从60年代末以来,美国及一些国际组织发射了资源遥感卫星(如LANDSAT系列)和天空实验室(如SKYLAB),由于成像条件受飞行器位置、姿态、环境条件等影响,图像质量总不是很高。因此,以如此昂贵的代价进行简单直观的判读来获取图像是不合算的,而必须采用数字图像处理技术。如LANDSAT系列陆地卫星,采用多波段扫描器(MSS),在900km高空对地球每一个地区以18天为一周期进行扫描成像,其图像分辨率大致相当于地面上十几米或100米左右(如1983年发射的LANDSAT-4,分辨率为30m)。这些图像在空中先处理(数字化,编码)成数字信号存入磁带中,在卫星经过地面站上空时,再高速传送下来,然后由处理中心分析判读。这些图像无论是在成像、存储、传输过程中,还是在判读分析中,都必须采用很多数字图像处理方法。现在世界各国都在利用陆地卫星所获取的图像进行资源调查(如森林调查、海洋泥沙和渔业调查、水资源调查等),灾害检测(如病虫害检测、水火检测、环境污染检测等),资源勘察(如石油勘查、矿产量探测、大型工程地理位置勘探分析等),农业规划(如土壤营养、水份和农作物生长、产量的估算等),城市规划(如地质结构、水源及环境分析等)。我国也陆续开展了以上诸方面的一些实际应用,并获得了良好的效果。在气象预报和对太空其它星球研究方面,数字图像处理技术也发挥了相当大的作用。 2)生物医学工程方面的应用数字图像处理在生物医学工程方面的应用十分广泛,而且很有成效。除了上面介绍的CT技术之外,还有一类是对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。此外,在X光肺部图像增晰、超声波图像处理、心电图分析、立体定向放射治疗等医学诊断方面都广泛地应用图像处理技术。 3)通信工程方面的应用当前通信的主要发展方向是声音、文字、图像和数据结合的多媒体通信。具体地讲是将电话、电视和计算机以三网合一的方式在数字通信网上传输。其中以图像通信最为复杂和困难,因图像的数据量十分巨大,如传送彩色电视信号的速率达100Mbit/s以上。要将这样高速率的数据实时传送出去,必须采用编码技术来压缩信息的比特量。在一定意义上讲,编码压缩是这些技术成败的关键。除了已应用较广泛的熵编码、DPCM编码、变换编码外,目前国内外正在大力开发研究新的编码方法,如分行编码、自适应网络编码、小波变换图像压缩编码等。 4)工业和工程方面的应用在工业和工程领域中图像处理技术有着广泛的应用,如自动装配线中检测零件的质量、并对零件进行分类,印刷电路板疵病检查,d性力学照片的应力分析,流体力学图片的阻力和升力分析,邮政信件的自动分拣,在一些有毒、放射性环境内识别工件及物体的形状和排列状态,先进的设计和制造技术中采用工业视觉等等。其中值得一提的是研制具备视觉、听觉和触觉功能的智能机器人,将会给工农业生产带来新的激励,目前已在工业生产中的喷漆、焊接、装配中得到有效的利用。 5)军事公安方面的应用在军事方面图像处理和识别主要用于导d的精确末制导,各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。目前已投入运行的高速公路不停车自动收费系统中的车辆和车牌的自动识别都是图像处理技术成功应用的例子。 6)文化艺术方面的应用目前这类应用有电视画面的数字编辑,动画的制作,电子图像游戏,纺织工艺品设计,服装设计与制作,发型设计,文物资料照片的复制和修复,运动员动作分析和评分等等,现在已逐渐形成一门新的艺术--计算机美术。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)